From 1 - 10 / 197
  • Extended abstract version of short abstract accepted for conference presentation GEOCAT# 73701

  • Receiver function studies of Northern Sumatra T. Volti and A. Gorbatov Geoscience Australia, GPO Box 378 Canberra ACT 2601 Australia The Northern Sumatra subduction zone is distinguished by the occurrence of the 2004 Sumatra-Andaman megathrust earthquake and has a peculiar subduction of two major bathymetric structures; the Investigator fracture zone and the Wharton fossil ridge. Four stations in Northern Sumatra (BSI, PSI, PPI, GSI) and two stations in Malaysia (KUM and KOM) have been selected to construct migrated images based on receiver functions (RF) in order to study Earth structure and subduction processes in the region. Waveforms from 304 teleseismic earthquakes with Mb >5.5 and a distance range of 30º to 95º recorded from April 2006 to December 2008 were used for the analysis. The number of RF for each station varies from 20 to 192 depending on the signal/noise ratio. The computed RF clearly show pS conversions at major seismic velocity discontinuities associated with the subduction process where the Moho is visible at 5.5, 4, 3.5, and 2 sec for BSI, PSI, PPI, and GSI, respectively. RF for KUM and KOM have only conversions at the Moho near ~4 sec. The subducted slab is visible below Sumatra as a positive amplitude conversion preceded by a negative one, which we interpret as a low-velocity structure above the subducted slab. RF for PSI located at Toba supervolcano reveal pockets of low-velocity zones extending from a ~50 km depth down to the subducted slab. Forward modellings of RF suggest that seismic velocity contrasts can reach ~18% that is in accordance with previous local tomographic studies.

  • Three seismic lines (10GA-CP1, 10GA-CP2 and 10GA-CP3), which cross north to south across the Capricorn Orogen of Western Australia, have recently been collected by Geoscience Australia, ANSIR and the Geological Survey of Western Australia. The interpretation of these seismic lines is aimed at providing insight into the geologic structure of the Capricorn Orogen and to explore the relationship between the Pilbara and Yilgarn cratons. To aid in further interpretation and to add value to the seismic data an analysis of the available potential field data (gravity and magnetics) has also been undertaken. A range of geophysical data analysis techniques have been applied and include: multi-scale edge detection (worms), forward modelling and 3D inversion. By applying all three analysis techniques to the potential-field data major trends, contrasting properties and regional blocks relating to the subsurface geology have been determined, in turn, allowing for a detailed comparison with the seismic interpretation. Note that all results referred to in this abstract are preliminary and subject to change.

  • The new Australian geodetic VLBI network operated by University of Tasmania (UTAS) started regular observations in October, 2010. Three 12-meter "Patriot" radio telescopes are focused on improvement of the celestial and terrestrial reference frames in the southern hemisphere. We present first results from analysis of an eight-month set of geodetic VLBI data.

  • Tomographic images of Southeast Asia and Australia were created by inverting the travel-times of the Rayleigh wave Green's functions retrieved from cross-correlations of the ambient seismic noise. The travel-times of the Green's functions are inverted with a nonlinear two dimensional inversion scheme to map the seismic velocity perturbations of the Earth. Continuous records from the vertical components of 187 permanent broad-band seismic stations operated from 2007 to 2008 are processed. We limit our picks only for Green's functions with interstation separation between 1o and 60o. This ensures that only wide scale anomalies are included in the tomographic inversions. By employing a nonlinear wavefront tracker for the forward problem, we avoid the artefacts of the deviations from the great circle path assumptions for very long interstation paths. We conduct dispersion measurements of group velocities between 6 and 50 seconds by narrowly filtering the envelopes of the extracted Green's functions. The Rayleigh waves for the selected periods sample the Earth from upper-crust (~9 km) to uppermost mantle (~90 km). The tomographic images reveal heterogeneous structure of Australia marking major sediment deposits on shallow layers and the high-velocity structure of the Western Australia cratons composed of ancient Archaean and Proterozoic blocks. Low velocity zones in deeper layers correlate well with the areas of high heat flow and agree with the results of recent surface wave tomographic studies. The Sunda Arc is characterized by prominent low-velocity zones located below the western tip of Java, Java Sea, and Banda Sea for longer periods.

  • Extended abstract describing metallogenic significance of georgina-Arunta seismic line. The abstract discusses mainly the Neoproterozoic and Phanerozoic mineral potential, including implications to U, Cu-Co, Au, Cu-U and energy.

  • The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. In 2012, twenty-eight areas in nine offshore basins are being released for work program bidding. Closing dates for bid submissions are either six or twelve months after the release date, i.e. 8 November 2012 and 9 May 2013, depending on the exploration status in these areas and on data availability.

  • The lower Darling Valley contains Cenozoic shallow marine, fluvial, lacustrine and aeolian sediments including a number of previously poorly dated Quaternary fluvial units associated with the Darling River and its anabranches. New geomorphic mapping of the Darling floodplain that utilises a high resolution LiDAR dataset and SPOT imagery, has revealed that the Late Quaternary sequence consists of scroll-plain tracts of different ages incised into a higher more featureless mud-dominated floodplain. Samples for OSL (Optically-Stimulated Luminescence) and radiocarbon dating were taken in tractor-excavated pits, from sonic drill cores and from hand-auger holes from a number of scroll-plain and older floodplain sediments in the Menindee region. The youngest, now inactive, scroll-plain phase, associated with the modern Darling River, was active in the period 5-2 ka. A previous anabranch scroll-plain phase has dates around 20ka. Indistinct scroll-plain tracts older than the anabranch system, are evident both upstream and downstream of Menindee and have ages around 30ka. These three scroll-plain tracts intersect just south of Menindee but are mostly separated upstream and downstream of that point. Older dates of 50 ka, 85 ka and >150 ka have been obtained from lateral-migration sediments present beneath the higher mud-dominated floodplain. Establishing a chronology for the Quaternary fluvial landscape has been important for groundwater investigations in the Darling River floodplain area. More specifically, this has assisted in constraining the 3D mapping of floodplain units, helped constrain conceptual models of surface-groundwater interaction, and aided in the assessment of managed aquifer recharge options.

  • Six deep seismic reflection profiles totalling ~900 km were acquired across the Mount Isa Province in 2006 (Figure 1). Each vibe point was recorded to ~20 s TWT (two-way travel time), which equates to ~60 km depth. The aims of the survey were to develop a 3D model and a geodynamic history of the province, link deep crustal structure with known mineral deposits, and demonstrate the potential of deep seismic surveys in mineral exploration