From 1 - 10 / 142
  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. jb_s4 is an ArcINFO grid of southern part of Jervis Bay survey area (south4 is part of Darling RD grid) produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • Understanding the distribution and abundance of sponges and their associated benthic habitats is of paramount importance for the establishment and monitoring of marine reserves. Benthic sleds or trawls can collect specimens for taxonomic and genetic research, but these sampling methods can be too qualititative for many ecological analyses and too destructive for monitoring purposes. Advances in the use of underwater videography and still imagery for biodiversity habitat mapping and modelling have been used within Geoscience Australia to extract data related to sponge biodiversity patterns across three regions. In the new Oceanic Shoals Commonwealth Marine Reserve, sponge morphologies were characterized from still images to locate areas in which biodiversity may be high due to habitat-forming taxa. In the Carnarvon Shelf abundance of a target sponge (Cinachyrella sp.) was quantified from video to investigate relationships between biology and sediment characteristics. Around Lord Howe Island, benthic habitats are being analysed to the national standard of classification using both video and still images. Importantly specialists within ecology, geophysics and spatial statistics work together to integrate biological and physical data to provide unique and meaningful maps of predicted distributions and habitat suitability for key ecological benthic habitats.

  • The Leeuwin Current has significant ecological impact on the coastal and marine ecosystem of south-western Australia. This study investigated the spatial and temporal dynamics of the Leeuwin Current using monthly MODIS SST dataset between July 2002 and December 2012. Topographic Position Index layers were derived from the SST data for the mapping of the spatial structure of the Leeuwin Current. The semi-automatic classification process involves segmentation, 'seeds' growing and manual editing. The mapping results enabled us to quantitatively examine the current's spatial and temporal dynamics in structure, strength, cross-shelf movement and chlorophyll a characteristic. It was found that the Leeuwin Current exhibits complex spatial structure, with a number of meanders, offshoots and eddies developed from the current core along its flowing path. The Leeuwin Current has a clear seasonal cycle. During austral winter, the current locates closer to the coast (near shelf break), becomes stronger in strength and has higher chlorophyll a concentrations. While, during austral summer, the current moves offshore, reduces its strength and chlorophyll a concentrations. The Leeuwin Current also has notable inter-annual variation due to ENSO events. In El Niño years the current is likely to reduce strength, move further inshore and increase its chlorophyll a concentrations. The opposite occurs during the La Niña years. In addition, this study also demonstrated that the Leeuwin Current has a significantly positive influence over the regional nutrient characteristics during the winter and autumn seasons.

  • Submarine canyons have been recognised as areas of significant ecological and conservation value. In Australia, 713 canyons were mapped and classified in terms of their geomorphic properties. Many of them are identified as Key Ecological Features (KEFs) and protected by Commonwealth Marine Reserves (CMRs) using expert opinion based on limit physical and ecological information. The effectiveness of these KEFs and CMRs to include ecologically significant submarine canyons as prioritised conservation areas needs to be objectively examined. This study used two local-based spatial statistical techniques, Local Moran's I (LMI) and the Gi* statistic, to identify hotspots of Australian canyons (or unique canyons) for conservation priority. The hotspot analysis identified 29 unique canyons according to their physical attributes that have ecological relevance. Most of these unique physical canyons are distributed on the southern margins. Twenty-four of the 29 canyons are enclosed by the existing KEFs and protected by CMRs to varied extents. In addition, the hotspot analysis identified 79 unique canyons according to their chlorophyll a concentrations, all of which are located in the South-east marine planning region. The findings can be used to update or revise the profile descriptions for some existing KEFs. In future, if the boundaries of these KEFs are deemed necessary to be reviewed, the new information and knowledge could also be used to enhance the conservation priorities of these KEFs.

  • This study explored the full potential of high-resolution multibeam data for an automatic and accurate mapping of complex seabed under a predictive modelling framework. Despite of the extremely complex distributions of various hard substrata at the inner-shelf of the study area, we achieved a nearly perfect prediction of 'hard vs soft' classification with an AUC close to 1.0. The predictions were also satisfactory for four out of five sediment properties, with R2 values range from 0.55 to 0.73. In general, this study demonstrated that both bathymetry and backscatter information (from the multibeam data) should be fully utilised to maximise the accuracy of seabed mapping. From the modelled relationships between sediment properties and multibeam data, we found that coarser sediment generally generates stronger backscatter return and that deeper water with its low energy favours the deposition of mud content. Sorting was also found to be a better sediment composite property than mean grain size. In addition, the results proved one again the advantages of applying proper feature extraction approaches over original backscatter angular response curves.

  • A defining characteristic of the seabed is the proportion that is hard, or immobile. For marine ecosystems, hard seabed provides the solid substrate needed to support sessile benthic communities, often forming 'hotspots' of biodiversity such as coral and sponge gardens. For the offshore resource and energy industry, knowledge of the distribution of hard versus soft seabed is important for planning infrastructure (pipelines, wells) and to managing risk posed by geo-hazards such as migrating sand waves or mass movements on steep banks. Maps that delineate areas of hard and soft seabed are therefore a key product to the informed management and use of Australia's vast marine estate. As part of the Australian Government's Offshore Energy Security Program (2007-2011) and continuing under the National CO2 Infrastructure Plan (2011-2015), Geoscience Australia has been developing integrated seabed mapping methods to better map and predict seabed hardness using acoustic data (multibeam sonar), integrated with information from biological and physical samples. The first method used was a two-stage, classification-based clustering method. This method uses acoustic backscatter angular response curves to derive a substrate type map. The angular response curve is the backscatter value as a function of the incidence angle, where this angle lies between the incident acoustic signal from the normal. The second method was a prediction-based classification, using a machine learning method called random forest. This method was based on bathymetry, backscatter data and their derivatives, as well as underwater video and sediment data. The techniques developed by Geoscience Australia offer a fast and inexpensive assessment of the seabed that can be used where intensive seabed sampling is not feasible. Moreover, these techniques can be applied to areas where only multibeam acoustic data are available. Importantly, the identification of seabed substrate types in spatially continuous maps provides valuable baseline information for effective marine conservation management and infrastructure development.

  • In November 2012, the Australian Government finalised a national network of Commonwealth Marine Reserves (CMR) covering 3.1 million km2 and representing the full range of large scale benthic habitats known to exist around mainland Australia. This network was designed using the best available regional-scale information, including maps of seabed geomorphic features and associated Key Ecological Features. To support the management objectives of the marine reserves, new site-specific information is required to improve our understanding of biodiversity patterns and ecosystem processes across a range of spatial scales. In this context, the Marine Biodiversity Hub (funded through the National Environmental Research Program) recently completed a collaborative 'voyage of discovery' to the Oceanic Shoals CMR in the Timor Sea. This area was chosen because it hosts globally significant levels of biodiversity (including endemic sponge and coral taxa), faces rapidly increasing pressures from human activities (offshore energy industry, fishing) yet is recognised as one of the most poorly known regions of Northern Australia. Undertaken in September 2012 on board RV Solander, the survey acquired biophysical data on the shallow seabed environments for targeted areas within the Oceanic Shoals CMR, with a focus on the carbonate banks that characterise this tropical shelf and are recognised as a Key Ecological Feature. Data collected included 500 km2 of high resolution (300 kHz) multibeam sonar bathymetry and acoustic backscatter across four grids, plus seabed sediment samples, underwater tow-video transects (~1 km length), pelagic and demersal baited underwater video, epifaunal and infaunal samples and water column profiles at pre-determined stations. Station locations were designed to provide a random but spatially balanced distribution of sample sites, with weighting toward the banks. This design also facilitated observations of patterns of benthic biodiversity at local to feature-scale and transitions associated with depth-gradients and exposure to tidal currents. Results reveal the banks are broadly circular to elliptical with steep sides, mantled by muddy sand and gravel with areas of hard ground. Rising to water depths of 50-70 m, the banks support benthic assemblages of sponges and corals (including hard corals at shallower sites) which in turn support other marine invertebrates. In strong contrast, the surrounding seabed is characterised by barren, mud-dominated sediments in 70-100 m water depth, although infaunal samples reveal diverse biological communities beneath the seafloor. While the bank assemblages are locally isolated, the potential exists for connectivity between shoals via tide-driven larval dispersal. Ongoing work is aimed at identifying species to determine overlap between bank communities, as well as modelling the sources, pathways and sinks for larvae as a proxy for understanding the physical processes controlling the patterns of biodiversity across the Oceanic Shoals CMR at multiple scales.

  • Geoscience Australia's GEOMACS model was utilised to produce hindcast hourly time series of continental shelf (~20 - 300 m depth) bed shear stress (unit of measure: Pascal, Pa) on a 0.1 degree grid covering the period March 1997 to February 2008 (inclusive). The hindcast data represents the combined contribution to the bed shear stress by waves, tides, wind and densitydriven circulation. Included in the parameters that represent the magnitude of the bulk of the data are the quartiles of the distribution; Q25, Q50 and Q75 (i.e. the values for which 25, 50 and 75 percent of the observations fall below). Q25, or the 0.25 Quartile of the Geomacs output, represents the values for which 25% of the observations fall below (Hughes & Harris 2008).

  • Marine benthic biodiversity can be quantified using a range of sampling methods, including benthic sleds or trawls, grabs, and imaging systems, each of which targets a particular community or habitat. Research studies often incorporate only one of these sampling methods in published results, and the generality of marine biodiversity patterns identified among different sampling methods remains unknown. In this study we use three biological collections obtained during a collaborative survey between Geoscience Australian and the Australian Institute of Marine Science to the Van Diemen Rise in northern Australia: 1) Infauna sampled from a Smith-McIntyre grab, 2) Epifauna sampled from a benthic sled, and 3) Biological communities identified from video. For each dataset, we investigated potential patterns of species richness and community structure in relation to depth, geomorphology, and study area, as well as the relationships between datasets. No gear type yielded data that was strongly correlated with depth, but different patterns were evident among gear types based on study area and geomorphology. Comparisons among datasets indicate that species richness from sleds and grabs are more strongly correlated with each other than with richness from video. Further research is planned to incorporate datasets from other regions and habitats in order to provide a general assessment of sampling methods used in the quantification of benthic marine biodiversity in Australasia.

  • Northern Australia has been the focus of recent marine biodiversity research to support resource management for both industry and conservation. Much of this research has targeted habitat-forming sessile invertebrates and charismatic megafauna, but smaller macrofauna and infauna must also be considered due to their important roles in ecosystem functions. In this study, a Smith-McIntyre grab was used during two surveys in 2009 and 2010 to the Joseph Bonaparte Gulf to collect sediment samples which were then elutriated over a 500µm sieve. The associated polychaetes were identified to species-level. A total of 2224 individual polychaetes were collected from 133 grabs and represent 43 families, including several new species, at least one new genus (Pilargidae) and many new distribution records. Biodiversity patterns were also analysed according to environmental and spatial factors (grain-size, carbonate, total organic content, depth, distance offshore) in order to inform predictive models and further our understanding of ecosystem processes in the region. These patterns differ from those of larger epifauna collected on the same surveys, highlighting the need to consider small macrofauna in biodiversity research and associated marine management.