vegetation
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
National vegetation cover derived from: - Values 1, 7, and 8 from the 2007 forests dataset (BRS) - Values 2 and 3 from the NVIS 3.1 dataset (ERIN) - Values 1-6 and 9-11 from the catchment scale land use dataset (as at April 2009, BRS) - Any remaining no data areas filled from the Integrated Vegetation 2008 dataset (BRS) The datasets were resampled to 100 metre grids and projected to Albers equal area if required. The integrated vegetation grid was derived using a conditional statement weighing each input grid in the order listed above. Bureau of Rural Sciences, Canberra are custodians of the dataset.
-
Inland sulfidic soils have recently formed throughout wetlands of the Murray River floodplain associated with increased salinity and river regulation (Lamontagne et al., 2006). Sulfides have the potential to cause widespread environmental degradation both within sulfidic soils and down stream depending on the amount of carbonate available to neutralise acidity (Dent, 1986). Sulfate reduction is facilitated by organic carbon decomposition, however, little is known about the sources of sedimentary organic carbon and carbonate or the process of sulfide accumulation within inland sulfidic wetlands. This investigation uses stable isotopes from organic carbon (13C and 15N), inorganic sulfur (34S) and carbonate (13C and 18O) to elucidate the sources and cycling of sulfur and carbon within sulfidic soils of the Loveday Disposal Basin.
-
Atlas of Regolith Materials of Queensland. Companion to the 1:2,500,00 Queensland Regolith-Landform Map and GIS. Both broad and detailed regolith mapping and characterisation of materials was used to build an understanding of the regolith and its associated landforms. This state-wide overview contributes significantly to understanding the regolith and landform processes and regolith materials of Australian arid and coastal environments. This Queensland study extends seamlessly from the Northern Territory Regolith Landform Map and provides a broad-scale framework fro guiding geochemical prospecting for a wide range of minerals and materials.
-
Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. This paper focuses specifically on differing lake level management practices in order to assess associated environmental impacts. In western NSW, two Eucalyptus species, River Red Gum (E. camaldulensis) and Black Box (E. largiflorens) have well documented tolerances and both are located on the fringes of lakes in the Menindee Lakes Storage Water scheme. Flows to these lakes have been controlled since 1960 and lake levels monitored since 1979. Pre-regulation aerial photos indicate a significant change to the distribution of lake-floor and fringing vegetation in response to increased inundation frequency and duration. In addition, by coupling historic lake water-level data with a Landsat satellite imagery, spatial and temporal vegetation response to different water regimes has been observed. Two flood events specifically investigated are the 2010/11 and 1990 floods. Results from this analysis provide historic examples of vegetation response to lake regulation including whether recorded inundation duration and frequency resulted in positive or negative impacts, the time delay till affects become evident, duration of observed response and general recovery/reversal times. These findings can be used to inform ongoing water management decisions.
-
In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. In this study, the condition of two of Australia's iconic riparian and floodplain vegetation elements, River Red Gums (Eucalyptus camaldulensis) and Black Box (E. largiflorens) are examined in relation to differing hydraulic regimes. With increases in regulation along Murray-Darling Basin rivers, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Rather than undertaking a field based assessment of tree health in response to current water regimes, this paper documents a remote sensing study that assessed historic response of vegetation to a range of different climatic and hydraulic regimes at a floodplain scale. This methodology innovatively combined high-resolution vegetation structural mapping derived from LiDAR data (Canopy Digital Elevation Model and Foliage Projected Cover) with 23 years of Landsat time-series data. Statistical summaries of Normalised Difference Vegetation Index values were generated for each spatially continuous vegetation structural class (e.g. stand of closed forest) for each Landsat scene. Consequently long-term temporal change in vegetation condition was assessed against different water regimes (drought, local rainfall, river bank full, overbank flow, and lake filling). Results provide insight into vegetation response to different water sources and overall water availability. Additionally, some inferences can be made about lag times associated with vegetation response and the duration of the response once water availability has declined (e.g. after floodwaters recede). This methodology should enable water managers to better assess the adequacy of environmental flows.
-
The combination of anthropogenic activity and climate variability has resulted in changes to hydrologic regimes across the globe. Changes in water availability impact on vegetation structure and function, particularly in semi-arid landscapes. Riparian and floodplain vegetation communities are sensitive to changes to surface-water and groundwater availability in these water-limited landscapes. Remote-sensing multi-temporal methods can be used to detect changes in vegetation at a regional to local scale. In this study, a `best-available pixel' approach was used to represent dry-season, woody-vegetation-canopy characteristics inferred from Normalised Difference Vegetation Index (NDVI). This paper describes a method in which Landsat 5 TM and Landsat 7 ETM+ data from 1987 to 2011 were processed using object-based image-analysis techniques to generate annual minimum NDVI values for vegetation communities in the Lower-Darling floodplain The changes detected in riparian and floodplain canopies over time can then be integrated with other spatial data to identify water-source dependence and infer a relationship between changes to the hydrologic characteristics of specific water sources and vegetation dynamics.
-
Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. These approaches however often fail to incorporate sub-surface hydrogeological processes in their interpretation of groundwater dependence. This study, undertaken in the semi-arid Darling River Floodplain in NSW, Australia, innovatively combines Landsat Normalised Difference Vegetation Index (NDVI) time series data with hydrogeological, hydrogeochemical and hydrogeophysical data to assess the relative importance of hydrological processes and groundwater characteristics. Central to the approach is the use of airborne electromagnetics which provides a 3-dimensional context to otherwise point-based borehole data. This approach has resulted in an improved understanding of vegetation dynamics including the spatial distribution of vegetation utilising groundwater, timing and duration of groundwater use, and response to different hydrologic regimes (e.g. rainfall, lateral bank recharge, and overbank flooding). In particular, the study has established that the deeper (>25m), semi-confined aquifer is only rarely important to vegetation dynamics, with the shallow unconfined aquifer and river flush zones being of greater importance. These findings are being used to assess the suitability of proposed groundwater-development schemes in the study area, and have implications for riparian vegetation management more broadly.
-
Fresh groundwater resources are a highly valuable commodity, particularly in semi-arid to arid landscapes where annual precipitation is low and surface water is scarce. Water security, often achieved through the development of groundwater resources, is a high priority for rural communities within these water-limited landscapes. However this is often at the expense of the environment when alterations to the groundwater system, often in conjunction with drought conditions, can detrimentally impact floodplain and riparian vegetation structure and function. Remote-sensing methods can be used to detect such changes in vegetation. In this study, a multi-temporal Landsat Normalised Difference Vegetation Index (NDVI) approach was used to detect changes in riparian and floodplain vegetation in the Lower-Darling floodplain, NSW, Australia. When integrated with surface and subsurface data, these changes provided insight into how surface water availability and subsurface geological and hydrogeological characteristics influenced vegetation distribution and behaviour at multiple scales. It was found that while the availability of water resources was the primary driver of changes in vegetation canopy dynamics, this availability was strongly influenced by both tectonic and hydrogeological processes. These findings were of particular importance when considering the suitability of groundwater development options and they have implications for future groundwater assessment studies.
-
Identification of groundwater-dependent (terrestrial) vegetation, and assessment of the relative importance of different water sources to vegetation dynamics commonly involves detailed ecophysiological studies over a number of seasons or years. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Consequently, quicker, more regional mapping approaches have been developed. These new approaches utilise advances in computation geoscience, and remote sensing and airborne geophysical technologies. The Darling River Floodplain, western New South Wales, Australia, was selected as the case study area. This semi-arid landscape is subject to long periods of drought followed by extensive flooding. Despite the episodic availability of surface water resources, two native Eucalyptus species, E. camaldulensis (River Red Gum) and E. largiflorens (Black Box) continue to survive in these conditions. Both species have recognised adaptations, include the ability to utilise groundwater resources at depth. A remote sensing methodology was developed to identify those communities potentially dependent on groundwater resources during the recent millennium drought in Australia.
-
The Integrated Vegetation Cover (2003), hereafter referred to as the IVC03 dataset represents vegetation cover across Australia and was compiled by integrating a number of recent vegetation-related datasets.This dataset was developed to assess and report on the type and extent of native, non-native and non-vegetated cover types across the whole landscape. This dataset has been used to describe vegetation types found in each National Action Plan and Natural Heritage Trust regions across Australia. Data are stored as a raster of 100m resolution and are projected in Albers conic equal-area coordinates.Version 1 incorporates a selection of the latest available vegetation data as at July 2003.Vegetation cover in the IVC03 dataset is described using a 12-class attribute schema that was developed to meet vegetation-related information needs of the Commonwealth Government natural resource management arena.The IVC03 dataset has 12 attribute classes:1Native forests and woodlands 2Native shrublands and heathlands 3Native grasslands and minimally modified pastures4Horticultural trees and shrubs5Perennial crops6Annual crops and highly modified pastures7Plantation (hardwood)8Plantation (softwood/mixed)9Bare10Ephemeral and Permanent Water Features11Built-up99Unknown/not reportable. Five datasets were used as inputs to create the IVC03 dataset.A national ruleset was developed to assign orders of precedence to each attribute value from each input dataset.The ruleset was used to integrate the inputs into a single vegetation cover dataset. The five input datasets were:-Agricultural Land Cover Change (ALCC95);-Forests of Australia 2003 (FOA03);-1996/97 Land Use of Australia, Version 2 (LUA97);-Land Use Mapping at the Catchment Scale (LUMCS03); and-National Vegetation Information System 2000 (NVIS00).