sedimentary basins
Type of resources
Keywords
Publication year
Scale
Topics
-
Legacy product - no abstract available
-
A summary of the regional geology, geophysics, and petroleum potential of the Clarence-Moreton Basin
Legacy product - no abstract available
-
In 2009, as part of its Onshore Energy Security Program, Geoscience Australia, in conjunction with the Northern Territory Geological Survey, acquired 373 km of vibroseis-source, deep seismic reflection, magnetotelluric and gravity data along a single north-south traverse from the Todd River in the south to nearly 30 km north of the Sandover Highway in the north. This traverse, 09GA-GA1, is referred to as the Georgina-Arunta seismic line, extends from the northeastern Amadeus Basin, across the Casey Inlier, Irindina and Aileron provinces of the Arunta Region and Georgina Basin to the southernmost Davenport Province. Here, we report the results of an initial geological interpretation of the seismic and magnetotelluric data, and discuss some preliminary geodynamic implications.
-
The frontier deepwater Otway and Sorell basins lie offshore of south-western Victoria and western Tasmania at the eastern end of Australia's Southern Rift System. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic. The complex structural and depositional history of the basins reflects their location in the transition from an orthogonal-obliquely rifted continental margin (western-central Otway Basin) to a transform continental margin (southern Sorell Basin). Despite good 2D seismic data coverage, these basins remain relatively untested and their prospectivity poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows. Three wells have been drilled in the Sorell Basin, where minor oil shows were recorded near the base of Cape Sorell 1. As part of the Federal Government funded Offshore Energy Security Program, Geoscience Australia has acquired new aeromagnetic data and utilised open file seismic datasets to undertake an integrated regional study of the deepwater Otway and Sorell basins. Structural interpretation of the new aeromagnetic data and potential field modelling provide new insights into the basement architecture and tectonic history, and highlights the role of pre-existing structural fabric in controlling the evolution of the basins. Regional scale mapping of key sequence stratigraphic surfaces across the basins, integration of the regional structural analysis, and petroleum systems modelling have resulted in a clearer understanding of the tectonostratigraphic evolution and petroleum prospectivity of this complex basin system.
-
The Onshore Energy Security Program, funded by the Australian Government and conducted by Geoscience Australia, has acquired deep seismic reflection data, in conjunction with State and Territory geological surveys, across several frontier sedimentary basins to stimulate petroleum exploration in onshore Australia. Here, we present data from two seismic lines collected in South Australia and the Northern Territory. Seismic line 08GA-OM1 crossed the Carboniferous to Permian Arckaringa Basin is imaged as a series of depocentres forming the Phillipson and Penrhyn Troughs, with a much thinner succession connecting the depocentres, and extending well to the north. Seismic line 08GA-OM1 also crosses the Neoproterozoic to Devonian eastern Officer Basin. The basin is structurally complex in this area, being dominated by south-directed thrust faults and fault-related folds, providing potential for underthrust petroleum plays. Seismic line 08GA-OM1 also images the southern margin of the Amadeus Basin Seismic line 09GA-GA1 crossed the northeastern part of the Amadeus Basin and the complete width of the southern Georgina Basin in the Northern Territory. Structural and sequence stratigraphic interpretations of the seismic lines will be presented here, to be followed by an assessment of the petroleum potential of the basins. In the northeast, seismic line 09GA-GA1 crosses two parts of the basin separated by the Paleoproteroozic to Mesoproterozoic Casey Inlier. Seismic line 09GA-GA1 was positioned to cross that part of the southern Georgina Basin where the basin has a complex southern margin, with Neoproterozoic stratigraphy being thrust interleaved with basement rocks of the Arunta Region.
-
In mid 2011, the Australian Government announced funding of a new four year National CO2 Infrastructure Plan (NCIP) to accelerate the identification and development of sites suitable for the long term storage of CO2 in Australia that are within reasonable distances of major energy and industrial CO2 emission sources. The NCIP program promotes pre-competitive storage exploration and provides a basis for the development of transport and storage infrastructure. The Plan follows on from recommendations of the Carbon Storage Taskforce and the National CCS Council (formerly, the National Low Emissions Coal Council). It builds on the work funded under the National Low Emissions Coal Initiative and the need for adequate storage to be identified as a national priority. Geoscience Australia is providing strategic advice in delivering the plan and will lead in the acquisition of pre-competitive data and geological studies to assess storage potential. Four offshore sedimentary basins (Bonaparte, Browse, Perth and Gippsland basins) and several onshore basins have been identified for pre-competitive data acquisition and study.
-
1. Blevin et al.:Hydrocarbon prospectivity of the Bight Basin - petroleum systems analysis in a frontier basin 2. Boreham et al : Geochemical Comparisons Between Asphaltites on the Southern Australian Margin and Cretaceous Source Rock Analogues 3. Brown et al: Anomalous Tectonic Subsidence of the Southern Australian Passive Margin: Response to Cretaceous Dynamic Topography or Differential Lithospheric Stretching? 4. Krassay and Totterdell : Seismic stratigraphy of a large, Cretaceous shelf-margin delta complex, offshore southern Australia 5. Ruble et al : Geochemistry and Charge History of a Palaeo-Oil Column: Jerboa-1, Eyre Sub-Basin, Great Australian Bight 6. Struckmeyer et al : Character, Maturity and Distribution of Potential Cretaceous Oil Source Rocks in the Ceduna Sub-Basin, Bight Basin, Great Australian Bight 7. Struckmeyer et al: The role of shale deformation and growth faulting in the Late Cretaceous evolution of the Bight Basin, offshore southern Australia 8. Totterdell et al : A new sequence framework for the Great Australian Bight: starting with a clean slate 9. Totterdell and Bradshaw : The structural framework and tectonic evolution of the Bight Basin 10. Totterdell and Krassay : The role of shale deformation and growth faulting in the Late Cretaceous evolution of the Bight Basin, offshore southern Australia
-
Summary of forward gravity and flexure modelling of the New Caledonia Trough to highlight temporal variations in lithospheric rigidity during its evolution.
-
The Onshore Energy Security Program, funded by the Australian Government, has been a five year program (2006-2011) conducted by Geoscience Australia in conjunction with the Australian state and Northern Territory geological surveys. Its aim was to provide new geological information on frontier onshore sedimentary basins in Australia, and, as part of this program, deep seismic reflection data have been acquired across several basins, to provide fundamental information on the stratigraphic and structural architecture of the basins and to stimulate hydrocarbon exploration. Reflection data were acquired over the Darling, Arrowie, Georgina (Queensland and Northern Territory), Amadeus, Arckaringa, Officer (Western Australia and South Australia) and southern Carnarvon Basins. This program also discovered and imaged a previously unknown basin, the Millungera Basin, in northwestern Queensland. Ranging from the Neoproterozoic to Cretaceous, these basins encompass segments of the Centralian Superbasin and later phases of basins that have built the Australia continent. Key results of this work include description of the architecture and internal geometries of each basin, settings imaged include mostly extensional basins, many which are later subject to contraction either by inversion (Arrowie Basin) or thrusting (Amadeus Basin) and, an example of a strike-slip basin, the Moorilyanna Graben, in the Officer Basin. The interpretation of stratigraphy used a sequence stratigraphic approach providing a basis for 1D petroleum systems modelling of the Millungera, Arrowie, Georgina (QLD) and Darling Basins. In total, 10 deep seismic profiles across 8 basins have been interpreted, hopefully contributing to an increase in onshore exploration activity.
-
The paper discusses the results from the GA-302 2D seismic survey and GA-2436 (RV Tangaroa) marine reconnaissance survey over the Capel and Faust basins, northern Tasman Sea. The integration of seismic, potential field and bathymetric data sets in 3D space at an early stage in the project workflow has assisted in the visualisation of the basin architecture, the interpolation of data between the seismic lines, and the iterative refinement of interpretations. The data sets confirm the presence of multiple depocentres, as previously interpreted from satellite gravity data, with a maximum sediment thickness of 5-7 km. Preliminary interpretation of the seismic data has identified two predominantly Cretaceous syn-rift and two Upper Cretaceous to Neogene sag megasequences overlying a heterogeneous pre-rift basement. The comparison of seismic facies and tectonostratigraphic history with offshore New Zealand and eastern Australian basins suggests the presence of possible Jurassic to Upper Cretaceous coaly and lacustrine source rocks in the pre- and syn-rift, and fluvio-deltaic to shallow marine reservoir rocks in the syn-rift to early post-rift successions. Preliminary 1D basin modelling suggests that the deeper depocentres of the Capel and Faust basins are within the oil and gas windows. Large potential stratigraphic and structural traps are also present.