energy
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Like many of the basins along Australia's eastern seaboard, there is currently only a limited understanding of the geothermal energy potential of the New South Wales extent of the Clarence-Moreton Basin. To date, no study has examined the existing geological information available to produce an estimate of subsurface temperatures throughout the region. Forward modelling of basin structure using its expected thermal properties is the process generally used in geothermal studies to estimate temperatures at depth in the Earth's crust. The process has seen increasing use in complex three-dimensional (3D) models, including in areas of sparse data. The overall uncertainties of 3D models, including the influence of the broad assumptions required to undertake them, are generally only poorly examined by their authors and sometimes completely ignored. New methods are presented in this study which will allow estimates and uncertainties to be addressed in a quantitative and justifiable way. Specifically, this study applies Monte Carlo Analysis to constrain uncertainties through random sampling of statistically congruent populations. Particular focus has been placed on the uncertainty in assigning thermal conductivity values to complex and spatially extensive geological formations using only limited data. As a case study these new methods are then applied to the New South Wales extent of the Clarence-Moreton Basin. The geological structure of the basin has been modelled using data from existing petroleum drill holes, surface mapping and information derived from previous studies. A range of possible lithological compositions was determined for each of the major geological layers through application of compositional data analysis. In turn, a range of possible thermal conductivity values was determined for the major lithology groups using rock samples held by the NSW Department of Primary Industries (DPI). These two populations of values were then randomly sampled to establish 120 different forward models, the results of which have been interpreted to present the best estimate of expected subsurface temperatures, and their uncertainties. These results suggest that the Clarence-Moreton Basin has a moderate geothermal energy potential within an economic drilling depth. This potential however, displays significant variability between different modelling runs, which is likely due to the limited data available for the region. While further work could improve these methods, it can be seen from this study that uncertainties can provide a means by which to add confidence to results, rather than undermine it.
-
Note: A more recent version of this product is available. This dataset contains spatial locations in point format as a representation of Electricity Transmission Substations in Australia. For government use only. Access through negotiation with Geoscience Australia
-
The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey covers an area of 74,000 km2 from Darwin to Katherine in the Northern Territory which hosts several world class deposits, including the Ranger Uranium Mine, Nabarlek, Mt Todd, Moline and Cosmo Howley. Aimed at regional mapping, uranium exploration, reducing exploration risk and promoting exploration activity, the program worked closely with industry partners to infill wide regional line spacing (5km) with deposit scale line spacing (less than 1km). The survey results are relevant in exploration for a variety of commodities and resources, including uranium, copper, lead, zinc, gold, nickel and groundwater. Geoscience Australia's interpretation products include sample-by-sample layered earth inversion products comprising located data, geo-located conductivity depth sections, depth slice grids, elevation slice grids, inversion report and an interpretation report. All data and products are available from GA as well as the Northern Territory Geological Survey Geophysical Image Web Server.
-
High voltage transmission towers are key linear assets that supply electricity to communities and key industries and are constantly exposed to wind effects where they traverse steep topography or open terrain. Lattice type high voltage transmission towers are highly optimised structures to minimise cost and reserve strength at design wind speeds (Albermani and Kitipornchai, 2003). The structures are tested under static loading conditions for specified load cases at the design stage. However, the interconnected nature of the lattice towers and conductors present a complex response under dynamic wind loading in service (Fujimura, el.al., 2007). The transmission tower's survival under severe wind and additional load transfer due to collapse of its neighbours is difficult to assess through modelling. Furthermore, the lack of data in the industry doesn't allow for a probabilistic analysis based on history (Abdallah, et.al., 2008). Hence, there is a need for developing an alternative methodology for analysing transmission tower collapse and survival of transmission lines subjected to cyclonic winds utilising design information, limited field data and industry expertise.
-
This dataset represents the results of the assessment of the potential for uranium and geothermal energy systems in the southern Northern Territory. Four uranium systems were targeted: 1) sandstone-hosted, 2) uranium-rich iron oxide-copper-gold, 3) unconformity-related, and 4) magmatic-related. These were assessed for using a 2D, GIS-based approach, and utilised a mineral systems framework. In addition to the uranium systems investigated, the potential for hot rock and hot sedimentary aquifer geothermal systems was also assessed. Only the results of the hot rock geothermal assessment are presented here, since the assessment for hot sedimentary aquifer geothermal systems is more qualitative in nature. The assessment for hot rock geothermal systems was undertaken in a 3D environment, with temperatures at depth predicted using the 3D GeoModeller software package.
-
The area with which this report deals is situated on the upper reaches of Coree Creek, just below its junction with Condor Creek. Two possible dam sites were examined on Coree Creek, a quarter of a mile below Condor Creek. Mapping, physiography, general geology, structural geology, engineering geology, and sources of aggregate and sand are discussed. A petrological appendix is included.
-
For the projected development of the hydroelectric power resources of the Laloki River, Papua, a diversion weir will be required. Two sites have been selected by the officers of the Department of Works and Housing, downstream from Rouna Falls and another site, upstream from the falls, which would be suitable for a large scale power development. An inspection of these sites was made in order to indicate any geological difficulties which may be expected. The situation, physiography, and geology of the proposed sites, as well as the suitability of these sites, are discussed in this report.
-
This report is a summary of information collected between November, 1948 and July, 1949 in the course of visits to the United Kingdom and the United States. The main subjects investigated were the complete gasification of coal, particularly in respect of its application to Victorian brown coal, the production of oil by synthesis and the production and refining of shale oil. Information was sought on a considerable number of other interests in the field of fuel technology as the opportunity offered. The authorities consulted were invariably experts in their respective fields, and great care was taken to record their information accurately. The report is a summary of recent developments and not an exhaustive study of the subjects mentioned. A considerable mass of detail has been excluded but is available on record for further reference.
-
PowerPoint presentations presented at the NORTH QUEENSLAND SEISMIC AND MT WORKSHOP in Townsville, June 2009.
-
The possibility of diverting the Upper Snowy River to provide water for irrigation has been a subject of discussion since 1884. The Snowy Mountains Hydro-Electric Authority was constituted in 1949. As the body responsible for the detailed investigation of the geology of the area it was thought desirable to publish the geological work which has been done in the Snowy Mountains region. With the authority of the Under-Secretary of the Department of Mines, New South Wales, the reports by members of the Geological Survey of New South Wales are included together with reports by geologists of the Commonwealth Bureau of Mineral Resources, Geology and Geophysics. Reports included in this publications are: "Geology - Jindabyne to Murrumbidgee River", "Reconnaissance Survey of Dam Site at Geehi, Swampy Plain River, N.S.W", "Geological Reconnaissance of the Proposed Hydro-Electric Works in the Kosciusko Area", "Geological Reconnaissance - Eucumbene River to Tumut River", and "Geological Reconnaissance - Murrumbidgee - Tumut Area".