From 1 - 10 / 58
  • This dataset represents the results of the assessment of the potential for uranium and geothermal energy systems in the southern Northern Territory. Four uranium systems were targeted: 1) sandstone-hosted, 2) uranium-rich iron oxide-copper-gold, 3) unconformity-related, and 4) magmatic-related. These were assessed for using a 2D, GIS-based approach, and utilised a mineral systems framework. In addition to the uranium systems investigated, the potential for hot rock and hot sedimentary aquifer geothermal systems was also assessed. Only the results of the hot rock geothermal assessment are presented here, since the assessment for hot sedimentary aquifer geothermal systems is more qualitative in nature. The assessment for hot rock geothermal systems was undertaken in a 3D environment, with temperatures at depth predicted using the 3D GeoModeller software package.

  • Summary of last 12 months activity in Acreage Release Area.

  • The Habanero Enhanced Geothermal System (EGS) in central Australia has been under development since 2002, with several deep (more than 4000 m) wells drilled to date into the high-heat-producing granites of the Big Lake Suite. Multiple hydraulic stimulations have been performed to improve the existing fracture permeability in the granite. Stimulation of the newly-drilled Habanero-4 well (H-4) was completed in late 2012, and micro-seismic data indicated an increase in total stimulated reservoir area to approximately 4 km². Two well doublets have been tested, initially between Habanero-1 (H-1) and Habanero-3 (H-3), and more recently, between H-1 and H-4. Both doublets effectively operated as closed systems, and excluding short-term flow tests, all production fluids were re-injected into the reservoir at depth. Two inter-well tracer tests have been conducted: the first in 2008, and the most recent one in June 2013, which involved injecting 100 kg of 2,6 naphthalene-disulfonate (NDS) into H-1 to evaluate the hydraulic characteristics of the newly-created H-1/H-4 doublet. After correcting for flow hiatuses and non-steady-state flow conditions, tracer breakthrough in H-4 was observed after 6 days (compared to ~4 days for the previous H-1/H-3 doublet), with peak breakthrough occurring after 17 days. Extrapolation of the breakthrough curve to late time indicates that approximately 60% of the tracer mass would eventually be recovered (vs. approximately 80% for the 2008 H-1/H-3 tracer test). This suggests that a large proportion of the tracer may lie trapped in the opposite end of the reservoir from H-4 and/or may have been lost to the far field. The calculated inter-well swept pore volume is approximately 31,000 m³, which is larger than that calculated for the H-1/H-3 doublet (~20,000 m³). A simple 2D TOUGH2 tracer model, with model geometry constructed based on the current conceptual understanding of the Habanero EGS system, demonstrates good agreement with the measured tracer returns in terms of timing of breakthrough in H-4, and observed tracer dispersion in the tail of the breakthrough curve.

  • This animation illustrates the various stages of development of Hot Rock geothermal resources for electricity generation. The animations were produced in GAV by the 3D animator, using 3D Studio Max software. Professional voice-over has been added, as well as sound effects. This version is based on the original version - 08-3385, geocat no.68461.

  • This document outlines Geoscience Australia's Onshore Energy Security Program and a working plan for its implementation over five years commencing August 2006. Part 1 summarises the budget, principles of the Program, consultation, objectives, outputs, program governance and structure, and communication. Part 2 outlines the plan of activities for each of the five years, and describes where some of the major datasets will be acquired, including radiometric, seismic reflection, airborne electromagnetic and geochemical data. Part 3 describes in brief the national and regional projects. The national projects are: Uranium, Geothermal, Onshore Hydrocarbons, and Thorium. The first four regional projects of the Program, in Queensland, South Australia, Northern Territory and northern Western Australia, are summarised. Appendix 1 outlines the objectives of current seismic reflection data acquisition as well as proposed and possible seismic reflection surveys. Appendix 2 outlines proposed and possible airborne electromagnetic surveys.

  • Presented to the Association of Mining and Exploration Companies (AMEC), Perth, March 2007

  • The area with which this report deals is situated on the upper reaches of Coree Creek, just below its junction with Condor Creek. Two possible dam sites were examined on Coree Creek, a quarter of a mile below Condor Creek. Mapping, physiography, general geology, structural geology, engineering geology, and sources of aggregate and sand are discussed. A petrological appendix is included.

  • At the request of the Tasmanian Hydro-Electric Commission a geophysical survey was carried out along a tunnel line at Trevallyn, a suburb of Launceston, North Eastern Tasmania. The excavation of the Trevallyn tunnel is part of the Hydro-Electric Trevallyn Power Development project to utilise the water of the South Esk river for generation of electric power. The construction works are already well advanced. A dam is being built on the river at the Second Basin. Water from the catchment will be diverted through a tunnel two miles long to a power station situated at sea level on the Tamar River. A locality map is given in Plate 1. Three geophysical exploration methods, electrical, seismic and gravitational, were used to locate deeply weathered and fractured zones in the dolerite bedrock, through which the tunnel is being driven.

  • The article provides an annula update on Australia's energy scenarion, focussing on offshore oil and gas exploration and production and advertsing the current open acreage release round.

  • This report is a summary of information collected between November, 1948 and July, 1949 in the course of visits to the United Kingdom and the United States. The main subjects investigated were the complete gasification of coal, particularly in respect of its application to Victorian brown coal, the production of oil by synthesis and the production and refining of shale oil. Information was sought on a considerable number of other interests in the field of fuel technology as the opportunity offered. The authorities consulted were invariably experts in their respective fields, and great care was taken to record their information accurately. The report is a summary of recent developments and not an exhaustive study of the subjects mentioned. A considerable mass of detail has been excluded but is available on record for further reference.