From 1 - 10 / 69
  • Green steel, produced using renewable energy and hydrogen, presents a promising avenue to decarbonize steel manufacturing and expand the hydrogen industry. Australia, endowed with abundant renewable resources and iron ore deposits, is ideally placed to support this global effort. This paper's two-step analytical approach offers the first comprehensive assessment of Australia's potential to develop green steel as a value-added export commodity. The Economic Fairways modelling reveals a strong alignment between prospective hydrogen hubs and current and future iron ore operations, enabling shared infrastructure development and first-mover advantages. By employing a site-based system optimization that integrates both wind and solar power sources, the cost of producing green steel could decrease significantly to around AU$900 per tonne by 2030 and AU$750 per tonne by 2050. Moreover, replacing 1% of global steel production would require 35 GW of well-optimized wind and solar photovoltaics, 16 GW of hydrogen electrolysers, and 1000 square kilometres of land. Sensitivity analysis further indicates that iron ore prices would exert a long-term influence on green steel prices. Overall, this study highlights the opportunities and challenges facing the Australian iron ore industry in contributing to the decarbonization of the global steel sector, underscoring the crucial role of government support in driving the growth and development of the green steel industry. <b>Citation:</b> Wang C et al., Green steel: Synergies between the Australian iron ore industry and the production of green hydrogen, <i>International Journal of Hydrogen Energy,</i> Volume 48, Issue 81, 1 October 2023, Pages 32277-32293, ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2023.05.041

  • The Australian Solar Energy Information System V2.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V2.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V2.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2012 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2011 ASEIS V2.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region the distance and bearing angle to the closest transmission powerline.

  • At the request of the Tasmanian Hydro-Electric Commission a geophysical survey was carried out along a tunnel line at Trevallyn, a suburb of Launceston, North Eastern Tasmania. The excavation of the Trevallyn tunnel is part of the Hydro-Electric Trevallyn Power Development project to utilise the water of the South Esk river for generation of electric power. The construction works are already well advanced. A dam is being built on the river at the Second Basin. Water from the catchment will be diverted through a tunnel two miles long to a power station situated at sea level on the Tamar River. A locality map is given in Plate 1. Three geophysical exploration methods, electrical, seismic and gravitational, were used to locate deeply weathered and fractured zones in the dolerite bedrock, through which the tunnel is being driven.

  • The Officer-Musgrave project investigates the groundwater and energy resource potential of the Officer Basin and neighbouring Musgrave Province near the junction of South Australia, Western Australia and the Northern Territory (Figure 1). Groundwater investigations focus on the Musgrave Province and overlying Officer Basin to identify potential palaeovalley groundwater resources, to support geological framework data acquisition and geochemistry. Groundwater systems in remote regions, such as the Officer-Musgrave region, are poorly understood due to sparse geoscientific data and few detailed scientific inestigations having been undertaken. Characterising the distribution and quality of groundwater resources, will lead to a better understanding of the groundwater resources for community supply and economic development opportunities. The energy resource component of the project focuses on the analysis of existing legacy datasets, including seismic and well data, in the Officer Basin and acquisition of key new precompetitive data. These activities will improve understanding of regional resource potential, with the aim of stimulating industry exploration investment in the medium-term, ultimately leading to new discoveries and wealth creation. This work builds directly on work completed in the first phase of the Exploring for the Future program, which enhanced our understanding of Centralian Superbasin stratigraphy (Khider et al., 2021; Bradshaw et al., 2021). Presented to the 2022 Central Australian Basins Symposium IV (CABS) 29-30 August (https://agentur.eventsair.com/cabsiv/)

  • For the projected development of the hydroelectric power resources of the Laloki River, Papua, a diversion weir will be required. Two sites have been selected by the officers of the Department of Works and Housing, downstream from Rouna Falls and another site, upstream from the falls, which would be suitable for a large scale power development. An inspection of these sites was made in order to indicate any geological difficulties which may be expected. The situation, physiography, and geology of the proposed sites, as well as the suitability of these sites, are discussed in this report.

  • This short video summarises the value of Geoscience Australia's work to the discovery, development and export of Australia's mineral and energy commodities. The video is from a series of six films produced to communicate Geoscience Australia's value to the nation. Further information about the agency's work in this area can be found at http://www.ga.gov.au/value-to-the-nation

  • Like many of the basins along Australia's eastern seaboard, there is currently only a limited understanding of the geothermal energy potential of the New South Wales extent of the Clarence-Moreton Basin. To date, no study has examined the existing geological information available to produce an estimate of subsurface temperatures throughout the region. Forward modelling of basin structure using its expected thermal properties is the process generally used in geothermal studies to estimate temperatures at depth in the Earth's crust. The process has seen increasing use in complex three-dimensional (3D) models, including in areas of sparse data. The overall uncertainties of 3D models, including the influence of the broad assumptions required to undertake them, are generally only poorly examined by their authors and sometimes completely ignored. New methods are presented in this study which will allow estimates and uncertainties to be addressed in a quantitative and justifiable way. Specifically, this study applies Monte Carlo Analysis to constrain uncertainties through random sampling of statistically congruent populations. Particular focus has been placed on the uncertainty in assigning thermal conductivity values to complex and spatially extensive geological formations using only limited data. As a case study these new methods are then applied to the New South Wales extent of the Clarence-Moreton Basin. The geological structure of the basin has been modelled using data from existing petroleum drill holes, surface mapping and information derived from previous studies. A range of possible lithological compositions was determined for each of the major geological layers through application of compositional data analysis. In turn, a range of possible thermal conductivity values was determined for the major lithology groups using rock samples held by the NSW Department of Primary Industries (DPI). These two populations of values were then randomly sampled to establish 120 different forward models, the results of which have been interpreted to present the best estimate of expected subsurface temperatures, and their uncertainties. These results suggest that the Clarence-Moreton Basin has a moderate geothermal energy potential within an economic drilling depth. This potential however, displays significant variability between different modelling runs, which is likely due to the limited data available for the region. While further work could improve these methods, it can be seen from this study that uncertainties can provide a means by which to add confidence to results, rather than undermine it.

  • Poster describing synthetic thermal modelling and its application to geothermal exploration in Australia

  • Precompetitive AEM data and associated scientific analysis assists exploration under cover by reducing risk, stimulating investment and promoting exploration for commodities. In recent years, Geoscience Australia has flown three regional Airborne Electromagnetic (AEM) surveys covering three percent of Australia. Data and associated interpretations from regional surveys in the Paterson, Pine Creek and Lake Frome regions have led to tenement take up, stimulated exploration for a number of commodities and have given rise to many Eureka moments. This presentation will outline significant results from the use of Geoscience Australia AEM data and interpretations, results that have been announced by industry via the Australian Stock Exchange and other publications.

  • The Georgina Basin Geoscience Data Package is a geospatial data compilation for the Georgina Basin, with a focus on the southern part of the basin. The data set includes three components: an ARC-GIS package (that includes geochemistry, biostratigraphy, formation top picks, hydrocarbon shows, XRD data, ICPMS data, SEM-EDX data, geomechanics data, well header information, Geoscience Australia maps, map products and geophysics), a seismic data compilation (incorporating existing publicly-available seismic data from the southern Georgina Basin, and a well folio (summarising in graphic form the key stratigraphic, geochemical, biostratigraphic, hydrocarbon shows, wireline log, porosity, permeability and HyLogger data for 29 wells in the southern Georgina Basin). The data package has been put together to assist explorers in understanding the conventional and unconventional hydrocarbon potential of the Georgina Basin.