wind
Type of resources
Keywords
Publication year
Topics
-
This GSV Greens Creek Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Greens Creek, Vic, 1988 (GSV1670). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Greens Creek Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1988 by the VIC Government, and consisted of 2001 line-kilometres of data at 250m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.
-
This GSV Pitfield Plains Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Pitfield Plains, Vic, 1987 (GSV1759). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Pitfield Plains Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 49m). The data used to produce this grid was acquired in 1987 by the VIC Government, and consisted of 1295 line-kilometres of data at 250m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.
-
This GSV Healesville South Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Healesville South, Vic, 2001 (GSV3181). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Healesville South Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 49m). The data used to produce this grid was acquired in 2001 by the VIC Government, and consisted of 5584 line-kilometres of data at 250m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.
-
This GSWA Gibb Rock thorium grid geodetic is an airborne-derived radiometric thorium window countrate grid for the Gibb Rock, WA, 1997 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of thorium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Gibb Rock thorium grid geodetic has a cell size of 0.0005 degrees (approximately 51m). The data are in units of counts per second (or cps). The data used to produce this grid was acquired in 1997 by the WA Government, and consisted of 4250 line-kilometres of data at 200m line spacing and 40m terrain clearance.
-
This GSWA Gibb Rock uranium grid geodetic is an airborne-derived radiometric uranium window countrate grid for the Gibb Rock, WA, 1997 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Gibb Rock uranium grid geodetic has a cell size of 0.0005 degrees (approximately 51m). The data are in units of counts per second (or cps). The data used to produce this grid was acquired in 1997 by the WA Government, and consisted of 4250 line-kilometres of data at 200m line spacing and 40m terrain clearance.
-
This GSWA Merredin Bruce Rock South thorium grid geodetic is an airborne-derived radiometric thorium window countrate grid for the Merredin-Bruce Rock, WA, 1997 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of thorium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Merredin Bruce Rock South thorium grid geodetic has a cell size of 0.00038 degrees (approximately 39m). The data are in units of counts per second (or cps). The data used to produce this grid was acquired in 1997 by the WA Government, and consisted of 27533 line-kilometres of data at 150m line spacing and 50m terrain clearance.
-
This GSWA Lake Grace thorium grid geodetic is an airborne-derived radiometric thorium window countrate grid for the Lake Grace, WA, 1995 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of thorium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Lake Grace thorium grid geodetic has a cell size of 0.00042 degrees (approximately 43m). The data are in units of counts per second (or cps). The data used to produce this grid was acquired in 1995 by the WA Government, and consisted of 4847 line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
This GSWA Pingaring totalcount grid geodetic is an airborne-derived radiometric total count window countrate grid for the Pingaring, WA,1993 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of total count (K), total count (U) and total count (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Pingaring totalcount grid geodetic has a cell size of 0.00083 degrees (approximately 85m). The data are in units of counts per second (cps). The data used to produce this grid was acquired in 1993 by the WA Government, and consisted of 7622 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
This Bathurst NSW total count grid geodetic is an airborne-derived radiometric total count window countrate grid for the Bathurst NSW 1991 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of total count (K), total count (U) and total count (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Bathurst NSW total count grid geodetic has a cell size of 0.0005 degrees (approximately 51m). The data are in units of counts per second (cps). The data used to produce this grid was acquired in 1991 by the NSW Government, and consisted of 68244 line-kilometres of data at 250m line spacing and 80m terrain clearance.
-
This Bathurst NSW uranium grid geodetic is an airborne-derived radiometric uranium window countrate grid for the Bathurst NSW 1991 survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Bathurst NSW uranium grid geodetic has a cell size of 0.0005 degrees (approximately 51m). The data are in units of counts per second (or cps). The data used to produce this grid was acquired in 1991 by the NSW Government, and consisted of 68244 line-kilometres of data at 250m line spacing and 80m terrain clearance.