From 1 - 10 / 63
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • This project was conducted by Geoscience Australia in collaboration with the Water Science Branch of the Department of Water, Western Australia, to acquire baseline information supporting the condition assessment for Hardy Inlet. The project contributes to the Estuarine Resource Condition Indicators project funded by the Strategic Reserve of the National Action Plan for Salinity and Water Quality / National Heritage Trust and forms part of the Resource Condition Monitoring endorsed under the State (Western Australia) Natural Resource Management framework. Two surveys were undertaken in Hardy Inlet in September 2007 and April 2008 with the aim to develop an understanding of the historical environmental changes and current nutrient and sediment conditions for the purpose of developing sediment indicators to characterise estuary condition.

  • Geoscience Australia has conducted four surveys in the Swan River Estuary to investigate benthic nutrient fluxes and their impact on water quality. Surveys were undertaken in March 2000, March 2001, September 2001 and October 2006, and both the upper and lower sections of the estuary were sampled. This report details the findings of the most recent benthic nutrient survey (October 2006) and compares benthic fluxes at selected sites during all four surveys. During the October 2006 survey, very high nutrient fluxes were recorded in the upper estuary muddy sites. Combined with very low denitrification efficiencies, large sediment nutrient pool sizes and hypoxic bottom waters, these muds are a significant source of bioavailable nutrients to the water column. Between 2000 and 2006 there has been a significant increase in the amount of organic matter decomposition and nutrient release from the muddy sediments in the upper estuary. A similar pattern is observed in the central basin, however, the change is not as severe. The shallow sandy margins of the lower estuary are sites of photosynthetic production, however, these differ between benthic and pelagic production depending on the light attenuation. When light is available at the sediment surface benthic production is evident, when light penetration is insufficient to reach the sediment surface pelagic production is more evident.

  • This document represents part of Geoscience Australia's contribution to the National Estuaries Assessment and Management (NE) project, Theme 5 (Assessment and Monitoring), Task 5A 'Conceptual Models of Australian Estuaries and Coastal Waterways'. The report contains comprehensive conceptual models of the biophysical processes that operate in a wide range of estuaries and coastal waterways found around Australia. Geomorphic conceptual models have been developed for each of the seven types of Australian estuaries and coastal waterways. Each conceptual model comprises a three-dimensional block diagram depicting detailed summaries of the structure, evolutionary characteristics, and geomorphology of each coastal waterway type, which are ?overlain? by flow diagrams that depict some of the important biotic and abiotic processes, namely: hydrology, sediment dynamics, and nutrient dynamics. Geomorphology was used as the common 'base layer' in the conceptual models, because sediment is the fundamental, underlying substrate upon which all other estuarine processes depend and operate. In the conceptual models, wave-dominated systems are depicted as having a relatively narrow entrance that restricts marine flushing, and low water-column turbidity except during extreme events. Tide-dominated systems feature relatively wide entrances, which likely promote efficient marine flushing, very large relative areas of intertidal habitats, and naturally high turbidity due to strong turbulence induced by tidal currents. Strong evidence exists suggesting that estuaries (both wave- and tide-dominated) are the most efficient 'traps' for terrigenous and marine sediments, and these are depicted as providing the most significant potential for trapping and processing of terrigenous nutrient loads. Intertidal areas, such as mangroves and saltmarshes, and also the central basins of wave-dominated estuaries and coastal lagoons, are likely to accumulate the majority of trapped sediments and nutrients. Conceptual model diagrams, with overlays representing environmental processes, can be used as part of a decision support system for environmental managers, and as a tool for comparative assessment in which a more integrative and shared vision of the relationship between components in an ecosystem can be applied.

  • The National Major Dam Walls dataset presents the spatial locations; in point and polygon format, of all known major dam walls within Australia.

  • An area of about 12,000 square miles was mapped in the field seasons 1950-51. It contains four Pre-Cambrian rock groups ranging from Archaeozoic to Uppermost Proterozoic. The main groups in the area, the Mt. Isa and Lawn Hill Groups, are shallow-water geosynclinal sediments involved in a Proterozoic orogeny which resulted in fairly intensive folding along dominantly north-south axes, together with much faulting. The geological features discussed in this report include physiography, topography, stratigraphy, igneous activity, structure, mineral deposits and water supply.

  • A PowerPoint presentation showing regional interpretations of data from the Frome airborne electromagnetic survey, presented at a workshop on 30 November 2011 at the University of Adelaide, South Australia

  • Hermannsburg Mission Station is situated 80 miles west of Alice Springs. In the winter of 1951, Pastor Albrecht, the Superintendent of the Mission, made a request for government assistance in the location of underground water supplies. Early in October, G.F. Joklik and S.A. Tomich, of the Bureau of Mineral Resources, spent five days on the station and picked seven sites for possible water bores. Throughout this report, reference is made to the accompanying map.

  • A detailed analysis of aquifer systems in the Broken Hill Managed Aquifer Recharge priority areas has clarified our understanding of key components of the aquifer systems. Of the priority areas examined in detail, the aquifers located in the Darling Floodplain are considered to have the greatest potential for developing Managed Aquifer Recharge (MAR) options and for hosting significant volumes of previously undefined fresh and brackish groundwaters with low levels of allocation, thereby assisting the larger strategic effort aimed at identifying significant water-saving measures for the Darling River system.