From 1 - 10 / 199
  • This paper presents a new style of bedload parting from western Torres Strait, northern Australia. Outputs from a hydrodynamic model identified an axis of bedload parting centred on the western Torres Strait islands (~142°15"E). Unlike bedload partings described elsewhere in the literature, those in Torres Strait are generated by incoherence between two adjacent tidal regimes as opposed to overtides. Bedload parting is further complicated by the influence of wind-driven currents. During the trade wind season, wind-driven currents counter the reversing tidal currents to a point where peak currents are directed west. The eastwards-directed bedload pathway is only active during the monsoon season. Satellite imagery was used to describe six bedform facies associated with the bedload parting. Bedform morphology was used to indicate sediment supply. Contrary to bedload partings elsewhere, sand ribbons are a distal facies within the western bedload transport pathway despite peak currents directed toward the west throughout the year. This indicates that sediment is preferentially trapped within sand banks near the axis of parting and not transported further west into the Gulf of Carpentaria or Arafura Sea.

  • The floodplain of the lower Balonne River is in the upper reaches of the Murray Darling Basin. The region has been extensively developed for agriculture, in particular irrigated cotton, and is highly productive. Multidisciplinary investigations to inform land management generated extensive sets of remotely sensed data including Landsat TM, airborne gamma-ray radiometrics, aerial photography, ASTER imagery, and digital elevation models. These datasets provided the basis for regolith and geomorphic mapping. The wealth of data has allowed characterisation of the lower Balonne River system which is typical of many of the dryland rivers of southern Queensland. The geomorphic map of the lower Balonne floodplain has 8 major units based on landform and geomorphic processes. Bedrock consists of the slightly deformed and extensively weathered marine Cretaceous Griman Creek Formation. Coincident with erosion and weathering, Paleogene quartz gravels were deposited and are now extensively cemented and preserved as remnants forming zones of inverted relief. Much of the present landscape consists of a series of juxtaposed depositional units that have infilled an incised valley system. The different depositional units show the palaeo-Balonne River migrating to the west. This is interpreted to be a result of tectonic depression and tilting to the west, causing avulsion and anastomosing of the palaeo-channels. The modern Balonne River system consists of a number of easily recognised segments. In the north, the modern channel is incised as a single channel. To the south the channel opens out onto an anastomosing plain with branching and reconnecting small-scale channels. Source bordering dunes, currently inactive, have also formed along the western and eastern sides of the modern river and are prominent in large dunes in the south along the present Moonie River. Their absence in older landscape elements points to increasing aridity over time in the river system.

  • Previously undated post Devonian sediments are shown by plant macro- and microfossils to be Early Cretaceous, and thus part of the Eromanga Basin. Modern landscape in the northern Barrier Ranges results from differential erosion following post-Early Cretaceous deformation that folded these and underlying rocks, most probably in response to reverse movements on faults at the western margin of the Bancannia Trough.

  • A geotechnical landscape map of Australia has been drawn depicting regions of constant [geological and physical] (NOT geophysical {Ed}) properties for road construction. The map, drawn at a scale of 1:2 500 000 for clarity, has a true accuracy of a 1:5 000 000 scale map, and is based on the four variables - landform, underlying lithology, soil type and [surficial] lithology - which are the principal [geological and physical] determinants for road construction. The origins and interpretation of the source maps together with a description of the legend of the geotechnical landscape map are described in this Report. Precis {Ed}: A map delineating regions with differing geotechical properties with particular application to road construction.

  • The Canbelego 1:100,000 regolith-landform map illustrates the distribution of regolith materials and the landforms on which they occur, described using the RTMAP scheme developed by Geoscience Australia

  • The Cobar Goldfield South 1;10,000 regolith-landform map illustrates the distribution of regolith materials and the landforms on which they occur, described using the RTMAP scheme developed by Geoscience Australia