From 1 - 10 / 199
  • The Quarry Hill 1:5,000 regolith-landform map illustrates the distribution of regolith materials and the landforms on which they occur, described using the RTMAP scheme developed by Geoscience Australia

  • The regolith landform maps are drawn at various scales and illustrate the distribution of regolith materials and the landforms on which they occur. Regolith landforms are described using the regolith terrain mapping (RTMAP) scheme developed at Geoscience Australia or the Residual-Erosional-Depositional (RED) mapping scheme developed by the CSIRO Division of Exploration and Mining.

  • Arcview GIS containing a regolith-landfrom map with associated site database. Most sites have a field photograph hot linked into the GIS. Complementary datasets include, digital elevation model and enhanced Landsat TM imagery.

  • The 1:250 000 maps show the type and distribution of 51 regolith-landform units with unique dominant regolith-landform associations, and are a subset of the 205 mapping units on the six 1:100 000 maps. These units are distinct patterns of recurring landform elements with characteristic regolith associations. Geomorphic symbols indicate the location and type of geomorphic activity. The maps present a systematic analysis and interpretation of 1:89 000 scale 1973 RC9 aerial photography, 1:100 000 scale topographic maps (AUSLIG), and field mapping data. High resolution (250m line spacing) airborne gamma-ray spectrometry and magnetics (Geoterrex) were used where applicable

  • This paper presents a new style of bedload parting from western Torres Strait, northern Australia. Outputs from a hydrodynamic model identified an axis of bedload parting centred on the western Torres Strait islands (~142°15"E). Unlike bedload partings described elsewhere in the literature, those in Torres Strait are generated by incoherence between two adjacent tidal regimes as opposed to overtides. Bedload parting is further complicated by the influence of wind-driven currents. During the trade wind season, wind-driven currents counter the reversing tidal currents to a point where peak currents are directed west. The eastwards-directed bedload pathway is only active during the monsoon season. Satellite imagery was used to describe six bedform facies associated with the bedload parting. Bedform morphology was used to indicate sediment supply. Contrary to bedload partings elsewhere, sand ribbons are a distal facies within the western bedload transport pathway despite peak currents directed toward the west throughout the year. This indicates that sediment is preferentially trapped within sand banks near the axis of parting and not transported further west into the Gulf of Carpentaria or Arafura Sea.

  • The 1:250 000 maps show the type and distribution of 51 regolith-landform units with unique dominant regolith-landform associations, and are a subset of the 205 mapping units on the six 1:100 000 maps. These units are distinct patterns of recurring landform elements with characteristic regolith associations. Geomorphic symbols indicate the location and type of geomorphic activity. The maps present a systematic analysis and interpretation of 1:89 000 scale 1973 RC9 aerial photography, 1:100 000 scale topographic maps (AUSLIG), and field mapping data. High resolution (250m line spacing) airborne gamma-ray spectrometry and magnetics (Geoterrex) were used where applicable

  • Faults of the Lapstone Structural Complex (LSC) underlie 100 km, and perhaps as much as 160 km, of the eastern range front of the Blue Mountains, west of Sydney. More than a dozen major faults and monoclinal flexures have been mapped along its extent. The Lapstone Monocline is the most prominent of the flexures, and accounts for more than three quarters of the deformation across the complex at its northern end. Opinion varies as to whether recent tectonism, or erosional exhumation of a pre-existing structure, better accounts for the deeply dissected Blue Mountains plateau that we see today. Geomorphic features such as the abandoned meanders at Thirlmere Lakes illustrate the antiquity of the landscape and favour an erosional exhumation model. According to this model, over-steepened reaches developed in easterly flowing streams at the Lapstone Monocline when down-cutting through shale reached more resistant sandstone on the western side of the LSC. These over-steepened reaches drove headward (westerly) knick point retreat, ultimately dissecting the plateau. However, a series of swamps and lakes occurring where small easterly flowing streams cross the westernmost faults of the LSC, coupled with over-steepened reaches 'pinned' to the fault zones in nearby larger streams, imply that tectonism plays a continuing role in the development of this landscape. We present preliminary results from an ongoing investigation of Mountain Lagoon, a small fault-bound basin bordering the Kurrajong Fault in the northern part of the LSC.

  • Kakadu and Nitmiluk (Katherine Gorge) National Parks are unique in Australia in terms of their diversity of geological, cultural and biological values. Both parks are renowned for sandstone plateaus with spectacular gorges and escarpments, and contain some of the oldest and finest collections of Aboriginal rock art in the world. The parks support a remarkable abundance and variety of plants and animals, many of them rare or not found anywhere else. Kakadu is also famous for its extensive wetlands and is one of the few World Heritage areas listed for both its natural and cultural values. This guidebook has been written by experts from the Australian Geological Survey Organisation, Northern Territory Geological Survey, Environment Australia, Parks Australia, and the Parks and Wildlife Commission of the Northern Territory. Written for the non-specialist, the guidebook provides a concise and authoritative account of the rocks, landforms, plants, animals, Aboriginal culture and exploration history of the Kakadu and Nitmiluk National Parks. There is also information on places to visit, walking trails, camping facilities, commercial tours and helpful hints on getting the most from your visit.

  • The Blue Rose 1:12,000 regolith-landform map illustrates the distribution of regolith materials and the landforms on which they occur, described using the Residual-Erosional-Depositional (RED) mapping scheme developed by the CSIRO Division of Exploration and Mining

  • The Regolith Map of Australia 1:5M scale dataset (2013 edition) is a seamless but partial national coverage of regolith-landform units, compiled for use at, or between 1:5 million, and 1:1 million scale. The data maps high-level regolith-landform units. The units appear as polygon geometries, and with attribute information identifying high-level regolith and landform nomenclatures and their hierarchy. The 2013 dataset is a completely new portrayal of Australia's regolith from that presented much earlier in 1986, in which a whole of continent view of Australia's regolith was based on a simpler desktop-based 1:5 million continental regolith terrain assessment, not directly linked with landforms and published by the Bureau of Mineral Resources Geology and Geophysics. The 2013 edition incorporates new published mapping in South Australia (2012), integrated with earlier field-based regolith-landform mapping data from the Northern Territory (2006) and later Queensland (2008). The attribute structure of the new dataset is also revised to be more compatible with the GeoSciML data standard, published by the IUGS Commission for Geoscience Information. The map data is compiled largely from simplifying and edge-matching of 1:250 000 scale regolith compilation maps. Some source regolith and geologic maps ranging in scale from 1:50 000 to 1:1 million were used together with LANDSAT7, radiometric, magnetics, and gravity imagery, in addition to a 9 second digital elevation model.