From 1 - 10 / 2507
  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.002 degrees (approximately 210m). The data used to produce this grid was acquired in UNKNOWN by the WA Government, and consisted of UNKNOWN line-kilometres of data at 100m line spacing and 50m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.004167 degrees (approximately 420m). The data used to produce this grid was acquired in UNKNOWN by the UNKNOWN Government, and consisted of UNKNOWN line-kilometres of data at 20000m line spacing and UNKNOWNm terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.000833 degrees (approximately 90m) and shows potassium element concentration of the Throssell, WA, 1998 survey. The data used to produce this grid was acquired in 1998 by the WA Government, and consisted of 39698 line-kilometres of data at 400m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.004 degrees (approximately 410m) and shows potassium element concentration of the Albany-Fraser (Esperance, Malcolm), WA, 1981 survey. The data used to produce this grid was acquired in 1981 by the WA Government, and consisted of 20797 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.004 degrees (approximately 430m). The data used to produce this grid was acquired in 1985 by the WA Government, and consisted of 26108 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.000833 degrees (approximately 90m) and shows thorium element concentration of the Duketon, WA, 1994 survey. The data used to produce this grid was acquired in 1994 by the WA Government, and consisted of 47160 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.000833 degrees (approximately 80m) and shows potassium element concentration of the South West (Cape Leeuwin - Collie), WA, 2011 survey. The data used to produce this grid was acquired in 2012 by the WA Government, and consisted of 105000 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.000417 degrees (approximately 40m) and shows potassium element concentration of the Arenite Area A, WA, 1994 & Arenite Area B, WA, 1996 survey. The data used to produce this grid was acquired in 1996 by the WA Government, and consisted of 19723 line-kilometres of data at 250m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.000833 degrees (approximately 90m) and shows uranium element concentration of the Duketon, WA, 1994 survey. The data used to produce this grid was acquired in 1994 by the WA Government, and consisted of 47160 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.000833 degrees (approximately 80m) and shows thorium element concentration of the Esperance - Malcolm, WA, 2008 survey. The data used to produce this grid was acquired in 2008 by the WA Government, and consisted of 82674 line-kilometres of data at 400m line spacing and 60m terrain clearance.