From 1 - 10 / 173
  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • This map shows the locations of mines operating at the end of 2016, developing mines and mineral deposits in Australia. Developing mines are deposits with a proven minable resource and where mines site development has commenced or where a decision to mine has been announced. Mineral deposits highlight areas of know mineralisation with a proven or probable resource, that are not currently being mined or developed. Closed mines or mines not operating at the end of 2016 are not shown.

  • 3D structural and geological models that provide insight and understanding of the continents subsurface. The models capture 3D stratigraphy and architecture, including the depth to bedrock and the locations of different major rock units, faults and geological structures. <b>Value: </b>These models are valuable for exploration and reconstructions of Australia's evolution <b>Scope: </b>Contains a variety of 3D volumetric models and surfaces that were produced for specific projects at regional to continental scale.

  • The Congararra 1 borehole was drilled approximately 70 km NNW of Bourke, NSW. The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates.

  • A second colour poster comparing the concepts in the computer game Minecraft with particular minerals and rocks. Aimed at school children, for display in classrooms. Designed to be printed at A2, but can also be printed smaller.

  • The GSQ Eulo 4 borehole was drilled approximately 35.5 km SW of Eulo, Queensland. The borehole was designed to test aeromagnetic anomalies in the basement rocks, and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • Statements of existing knowledge are compiled for known mineral, coal, hydrocarbon and carbon capture and storage (CCS) resources and reserves in the Adavale Basin. This data guide illustrates the current understanding of the distribution of these key resource types within the Adavale Basin region based on trusted information sources. It provides important contextual information on the Adavale Basin and where additional details on discovered resources can be found. So far, mineral deposits have not been found in the Adavale Basin. There are no coal deposits found in the basin itself, but 6 large coal deposits exist in the overlying basins in the Adavale Basin region. Historically, some small conventional gas resources have been found in the basin. Currently, there are no commercial reserves or available resources identified in the Adavale Basin itself. There are no active or planned carbon capture and storage (CCS) projects in the Adavale basin.

  • Publicly available geological data in the Galilee Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This web service summarises mineral potential in the Galilee Basin region.

  • The Euroli 1 borehole was drilled approximately 23 km SSW of Hungerford, Queensland (which is located on the New South Wales-Queensland border). The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates. The Euroli 1 borehole was commenced as a vertical mud rotary borehole and was completed with a deviated diamond drilled tail using a wedge.

  • Mafic igneous rocks are thought to be an important source of metals for the ca. 1640–1595 Ma sediment-hosted base metal deposits in the Paleo- to Mesoproterozoic Mount Isa – McArthur Basin system of northern Australia. Such rocks are widespread—the voluminous rift-related mafic magmatism at ca. 1790–1775 Ma and ca. 1730–1710 Ma—and show local evidence for intense hydrothermal alteration and metal leaching. To better constrain the nature, degree, and regional and temporal extent of alteration and metal leaching in these rocks, we have undertaken regional sampling of mafic igneous units from available drillcore, for geochemistry, stable isotopes and petrological examination. Sampling focused on magmatism of both ages in the southeastern MacArthur Basin, complementing the extensive pre-existing data for the Mount Isa region. Alteration in the mafic igneous rocks of the southeastern McArthur Basin ranges from mildly to strongly chloritic in the older units to strongly potassic (K-feldspar–chlorite–hematite) in the younger units. The latter alteration is ubiquitous, well developed and characterised by strong K2O enrichment and extreme depletion in CaO and Na2O. Geochemical data show that this intense and pervasive potassic alteration extends to similar-aged mafic rocks in the western Mount Isa region. Metal leaching is present in both alteration types, with strong Cu and Pb depletion in the most chlorite-altered rocks, and Zn and Cu depletion in the potassic alteration. Our oxygen isotope data for these mafic rocks (of both ages) in the southeastern McArthur Basin show a limited range of values (δ18O of 6–10‰) that are negatively correlated with K2O content. Our values are significantly lighter than published data for similar igneous rocks to the west, and indicate either a temperature zonation (ca. 250 °C in the east versus ca. 100 °C in the west; preferred) and/or different fluids. Results from our geochemical forward modelling indicate the requirement for exogenous K2O to produce the observed potassic alteration. The most likely source of this K was saline brines, consistent with the interpreted lacustrine and/or evaporitic environments for much of the McArthur Basin. Timing of alteration is uncertain, and the alteration may have included diagenetic low-temperature local K-rich brines and younger higher-temperature deep basinal brines. The temporal and geographically restricted nature of the potassic alteration, however, suggests restriction of K-rich, bittern evaporitic brine production in the younger and inboard parts of the Mount Isa – McArthur Basin system. Our results provide insights that directly relate to the genesis and exploration of basin-hosted Zn-Pb and Cu-Co mineral systems. They confirm that mafic igneous rocks in the region have lost significant amounts of both Zn and Cu, many times more than required for known deposits. The study also shows that metal leaching was accompanied by magnetite-destructive alteration. Hence, identifying zones of metal leaching may be possible using inversions of geophysical data, which may assist in targeting exploration. <b>Citation:</b> Champion, D.C., Huston, D.L., Bastrakov, E., Siegel, C., Thorne, J., Gibson, G.M. and Hauser, J., 2020. Alteration of mafic igneous rocks of the southern McArthur Basin: comparison with the Mount Isa region and implications for basin-hosted base metal deposits. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.