Geochemistry
Type of resources
Keywords
Publication year
Service types
Topics
-
A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). This dataset comprises sediment oxygen demand measurements on seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia
-
A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). This dataset comprises Total sediment metabolism, %carbonate, organic isotope (C and N) and organic and inorganic element data from seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia
-
The National Geochemical Survey of Australia (NGSA) was carried out to bridge a vast knowledge gap about the concentration and distribution of chemical elements at the Earth's surface and consequent poor understanding of processes controlling their distribution. The aim of the project was to contribute to derisking exploration for energy and mineral resources through the pre-competitive (government-funded) delivery of a new spatial layer of compositional data and information. Surface (0-10 cm depth) and shallow (~60-80 cm) samples of catchment outlet sediments were collected from 1315 sites located near the outlet of 1186 catchments (~10 % of which were sampled in duplicate) from across Australia. The total area covered by the survey was 6.174 million km2, or ~81% of Australia, at an average sampling density of 1 site per ~5200 km2. A number of field parameters (e.g., soil colour, pH), bulk parameters (e.g., electrical conductivity, particle size distribution) and geochemical parameters (i.e., multi-element composition of dry sieved <2 mm and <75 -m grain-size fractions) were determined. The grain-size fractions were analysed to determine (1) Total, (2) Aqua Regia soluble, and (3) Mobile Metal Ion (MMI®) extractable element contents. This data was collated into a spreadsheet and graphically represented as a series of 529 geochemical maps (www.ga.gov.au/ngsa). These constitute the first continental-scale series of geochemical maps based on internally consistent, state-of-the-art data pertaining to the same sampling medium collected, prepared and analysed in a uniform and thoroughly documented manner and over a short time period for Australia. They are being used to better understand the accumulation, mobility and significance of chemical elements in the near-surface environment. They provide a new, additional pre-competitive dataset for the energy and mineral resource exploration industry, which can help prioritise areas for further exploration investment and thus reduce risk. Further, some of this new information is already finding use in natural resource management and environmental monitoring. Applications to date and ongoing and future directions are discussed.
-
Lithium (Li) concentrations in catchment outlet sediment samples were measured as part of the National Geochemical Survey of Australia (NGSA; www.ga.gov.au/ngsa). Samples were collected at or near the outlet of 1186 catchments covering ~81% of Australia during 2007-2009. At each site a top outlet sediment (TOS) sample (0-10 cm depth) and a bottom outlet sediment (BOS) sample (~60-80 cm depth) were collected; each split into a 'coarse' (<2 mm) and a 'fine' (<75 mm) grain-size fraction. Li data is available for the Mobile Metal Ion (MMI®; TOS 'coarse' only) and Aqua Regia (AR) digestion techniques. Censored data (reported to be below the Lower Limit of Detection, LLD) account for 32% of the MMI® data (LLD = 0.005 mg/kg) and are absent from the AR dataset (LLD = 0.1 mg/kg); replacement values were imputed using a nearest neighbour method. The median MMI® value is three orders of magnitude lower than the median AR concentration. Further, there is an increase in median Li for the AR digestion following the order TOS 'coarse < BOS 'coarse' < TOS 'fine' < BOS 'fine'; in other words the deep or 'fine' samples have higher Li concentrations than their surface or 'coarse' counterparts. In order to assess the 'availability' of Li, the ratio of MMI® to AR Li (Li_Mi/Ai) was calculated and plotted. Li availability ranges from almost non-existent up to 14%. The map of Li_Mi/Ai shows that the regions of high Li availability correspond to the Yilgarn Craton, much of eastern South Australia, the southernmost, westernmost and central Northern Territory, south and western Queensland, western New South Wales and Victoria and a few coastal areas. These commonly are regions where salt lakes occur. However, assessment of Li content of source rocks and groundwaters and absence of active hydrogeological setting highlight limitations for the potential for Li-rich brines in Australian salt lakes.
-
The Milcarpa 1 borehole was drilled approximately 9 km SSE of Hungerford, Queensland, adjacent to the road between Hungerford and Wanaaring, NSW. The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates.
-
Top outlet sediments from the National Geochemical Survey of Australia (NGSA) have been extracted with Mobile Metal Ion (MMIR) solution and analyzed for over 50 elements including gold (Au). The MMIR Au results from this low density survey show discrete coherent anomalies for Au in the vicinity of many of Australia's known gold deposits, and in the vicinity of some minor gold occurrences. In several instances catchment outlet anomalies for Au have been recorded from areas not known to contain significant economic gold. Several large economic gold deposits are shown to not produce anomalies in catchment outlet samples. A survey of overbank samples in the Swan Avon Catchment of Western Australia at double the sampling density shows that low level anomalies (MMIR Au>1ppb) can be traced back to source using overbank sediments. Follow-up of one of the NGSA Au anomalies at Kent River in previously regarded non-auriferous terrain (western Albany-Fraser Belt) indicates a non-economic but perhaps geochemically significant Au anomaly with associated pathfinders including palladium. This may indicate that further exploration of the western part of Albany Fraser Belt for Au is warranted. The combination of catchment overbank samples and high-resolution MMIR technique has been shown to be effective at locating the source of gold anomalies from initial low-density continental and regional surveys.
-
This resource contains surface sediment data for Bynoe Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and Department of Land Resource Management (Northern Territory Government) during the period from 2-29 May 2016 on the RV Solander (survey SOL6432/GA4452). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The specific objectives of the survey were to: 1. Obtain high resolution geophysical (bathymetry) data for outer Darwin Harbour, including Shoal Bay; 2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for outer Darwin Harbour, including Shoal Bay; and 3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. This dataset comprises total sediment metabolism, carbonate and element concentrations and C and N isotopes measurements made on seabed sediments. A detailed account of the survey is provided in Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas W.A., Picard, K., Radke, L.C., Tran, M., Williams, D. and Whiteway, T., 2016. Bynoe Harbour Marine Survey 2017: GA4452/SOL6432 – Post-survey report. Record 2017/04. Geoscience Australia, Canberra. Thanks to the crew of the RV Solander for help with sample collection, Matt Carey, Craig Wintle and Andrew Hislop from the Observatories and Science Support at Geoscience Australia for technical support and Jodie Smith for reviewing the data. This dataset is published with the permission of the CEO, Geoscience Australia.
-
This report presents the location and sources of sediment samples and observational data in the Vestfold Hills (between 68° 23' and 68° 40' S, 77° 50' and 78° 35' E) to provide physical and chemical properties, sedimentary processes, and glacial and marine history of the terrestrial environment. This compilation of samples and observations incorporates data collected from the 1970s to present from published and unpublished sources. Sample locations and types are presented here to make them more readily available for further analysis and interpretation. Samples and observations are presented as point locations and include sample type, analyses, and references to the original data source.
-
This service provides access to inorganic geochemistry data obtained from chemical analyses of rock and regolith samples collected during mapping and sampling programs in Australia. This service will provide a spatial distribution of the sample attributes as well as provide a spatial distribution of the analytical composition of the samples with respect to major elements, minor elements and rare earth elements. This service includes original inorganic geochemistry data levelled to reference datasets.
-
This web service contains sediment and geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012, on RV Solander (survey GA0339/SOL5650).