From 1 - 10 / 137
  • This report presents a summary of the groundwater and surface water hydrochemistry data release from the Daly River project conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This data release records the groundwater sample collection methods and hydrochemistry and isotope data from monitoring bores in the Daly River project area, Northern Territory (NT). The Daly River project is a collaborative study between Geoscience Australia and the NT Government. Hydrochemistry and isotope data were collected from existing bores in the Daly River area. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report and all hydrochemistry data are available for download from the link at right.

  • This report presents a summary of the groundwater and surface water hydrochemistry data release from the Howard East project conducted as part of Exploring for the Future (EFTF) —an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This data release records the groundwater and surface water sample collection methods and hydrochemistry and isotope data from monitoring bores in the Howard East project area, Northern Territory (NT). The Howard East project is a collaborative study between Geoscience Australia and the NT Government. Hydrochemistry and isotope data were collected from existing bores in the Howard East area. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report and all hydrochemistry data are available for download from the link at right.

  • This animation shows how groundwater sampling is conducted. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by GA's data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what groundwater sampling equipment looks like, what the equipment measures and how scientists use the data.

  • Geoscience Australia commissioned reprocessing of selected legacy 2D seismic data in the East Kimberley, onshore Bonaparte Basin as part of the Exploring for the Future (EFTF) program. Reprocessing of these data occurred between September 2017 and May 2018. Exploring for the Future (<a href="https://www.ga.gov.au/eftf/">https://www.ga.gov.au/eftf</a>) was a $100.5 million four-year (2016-20), Australian Government-funded program to provide a holistic picture of the potential mineral, energy and groundwater resources in northern Australia. The program has delivered new geoscience data, knowledge and decision support tools to support increased industry investment and sustainable economic development across the north. Groundwater is a critical resource that accounts for most water used across northern Australia. The groundwater component of the EFTF program focused on addressing groundwater resource knowledge gaps, to support future opportunities for economic development via irrigated agriculture, extractive industries and increased security of community water supplies. Through collaboration with State and Territory partners, the program undertook targeted regional investigations of groundwater systems and assessments of groundwater potential more broadly across the region. The program's activities, implemented by Geoscience Australia, involved application of innovative geoscience tools to collect, integrate and analyse a range of data. It includes geological and hydrogeological data, airborne and ground-based geophysical and hydrogeochemical surveys, remote sensing data as well as stratigraphic drilling. The new data and better understanding of groundwater systems also helps inform decision making about groundwater use to protect environmental and cultural assets. These outcomes strengthen investor confidence in resources and agricultural projects by de-risking groundwater in northern Australia. The package contains reprocessed data from ten surveys acquired between 1980 and 1997. In total 53 lines were reprocessed covering a fold area of approximately 618.9 line kilometres, with the objective to produce a modern industry standard 2D land seismic reflection dataset where possible from a selection of multiple legacy 2D data. The purpose of the reprocessing was twofold: 1) To image the near surface structural and stratigraphic configuration for linking to AEM data that is available in the Bonaparte Basin; and 2) To image the structure and stratigraphic architecture of the Paleozoic Bonaparte Basin. The dataset exhibits significant improvements in stack response in most of the reprocessed lines when final and legacy stacks were compared, especially in the shallow section. Optimum results were obtained from the noise attenuation workflows. A minimum processing flow was applied to BWA80, BWA81, and line BNT87-404 lines to avoid any signal leakage throughout the processing. Final data were delivered as minimum phase (care should be taken not to interpret zero crossings as geological boundaries), and final velocities produced a good match with the well checkshot velocities. The processing report from Down Under Geophysics is available for download with this release. Raw and processed data are available on request from <a href="mailto:clientservices@ga.gov.au&body=Ref: eCat 135578">clientservices@ga.gov.au</a> - Quote eCat# 135578. Processed stack SEG-Y files and ancillary data are available for download from this web page.

  • This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.

  • Groundwater is an essential part of Darwin’s water supply mix, and is sourced from Howard East Borefield (HEB) and McMinns Borefield in the Koolpinyah Dolostone Aquifer (KDA), east of Darwin. Previous work suggested that electrical conductivity anomalies observed in airborne electromagnetic (AEM) data within 8 km of HEB may be caused by saline groundwater within the KDA that is separated from HEB by geological features that effectively compartmentalise the aquifer. Nevertheless, concerns grew that increased groundwater use may result in migration of saline groundwater towards HEB, which could compromise the groundwater resource. We collected hydrochemistry, including isotopes, time-series groundwater salinity and AEM data to better understand the complexities of the KDA. These data are presented here, along with a hydrodynamic analysis undertaken by the Northern Territory Department of Environment and Natural Resources, which shows that drawdown is occurring more rapidly from the NE of HEB and that dykes ~8 km NE of HEB act as barriers to groundwater flow. We show that groundwater sampled on the NE side of these dykes has a seawater composition. We use new AEM data to map the elevation of the top of unweathered dyke material and to characterise AEM conductors proximal to HEB. Our mapping reveals that the top of the unweathered portion of these dykes is commonly below sea level. We also show that AEM conductors proximal to HEB are more likely mineralised clays than saline groundwater within the aquifer. Drilling is required to confirm these results. Our findings contribute to building a robust conceptual understanding of the KDA and will inform future modelling of the groundwater system. <b>Citation:</b> Haiblen, A.M., Symington, N.J., Woltmann, M.J., Ray, A., Gow, L.J., Leplastrier, A. and McGrath, E.S.B., 2020. A multifaceted approach to investigating hydrogeological complexities in the Koolpinyah Dolostone Aquifer, Howard East, Northern Territory. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This Karumba Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Karumba Basin is a shallow geological basin in Queensland, Australia, composed of sedimentary rocks and unconsolidated sediments that cover the Mesozoic Carpentaria Basin. Deposition started during the Late Cretaceous to Early Paleocene and has continued into the Holocene. The basin extends from western Cape York Peninsula into the Gulf of Carpentaria, where it connects with Cenozoic sediment deposits in Papua New Guinea. Although the sediments in both areas share lithostratigraphic and biostratigraphic similarities, their tectonic histories differ. The basin's structural geology is relatively uniform, with a significant downwarp known as the Gilbert-Mitchell Trough in Cape York Peninsula and another depocenter offshore in the Gulf of Carpentaria. The depositional history and stratigraphy of the Karumba Basin can be divided into three cycles of deposition, erosion, weathering, and the formation of stratigraphic units. The earliest cycle (the Bulimba Cycle) began in the Late Cretaceous to Early Paleocene, with episodes of significant uplift along the eastern margins of the basin. This resulted in the deposition of the Bulimba Formation and the Weipa Beds, primarily consisting of claystone, sandstone, conglomerate, and siltstone with minor coal layers. This cycle was followed by a period of planation and deep weathering, creating the Aurukun Surface. The second cycle (the Wyaaba Cycle) was initiated by large-scale earth movements along the Great Dividing Ranges, forming much of the eastern boundary of the Karumba Basin, and leading to the formation of the Wyaaba beds and other equivalent units. These beds consist mainly of fluvial to paralic clay-rich sandstone, conglomerate, siltstone, and claystone. In the south-west, Oligocene to Pliocene limestone deposits also formed in lacustrine settings, and were sourced from and deposited upon the underlying Georgina Basin. The cycle ended with ensuing periods of erosion and weathering and the development of the Pliocene Kendall Surface, as well as widespread basaltic volcanism. The final cycle (the Claraville Cycle) started in the Pliocene and continues to the present. It has experienced several episodes of uplift and deposition controlled by sea level change, climate variability and volcanism in the south. The Claraville beds are unconsolidated sediments, chiefly comprised of clayey quartzose sand and mud with minor gravels, reaching approximately 148 m thickness offshore, and approximately 70 m onshore. As this cycle is still ongoing, no terminal surface has been formed, and most units consist of unconsolidated surficial sediments.

  • The Exploring for the Future Project Areas web service depicts the spatial extents of project work undertaken as part of Geoscience Australia's $100.5 million initiative dedicated to boosting investment in resource exploration in Australia. Each project area extent has been generated by aggregating all project work sites into an envelope polygon. An indicative spend on each f the projects is also given.

  • This report presents key results from the Upper Burdekin Groundwater Project conducted as part of Exploring for the Future (EFTF)—an eight year Australian Government funded geoscience data and information acquisition program. The first four years of the Program (2016–20) aimed to better understand the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project focused on the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) in the Upper Burdekin region of North Queensland. It was undertaken as a collaborative study between Geoscience Australia and the Queensland Government. This document reports the key findings of the project, as a synthesis of the hydrogeological investigation project and includes maps and figures to display the results.

  • This report provides an initial summary of the hydrogeochemistry of the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) of the Upper Burdekin Region of North Queensland, completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. Groundwater hydrogeochemistry studies can improve system understanding by reflecting host formation compositions and groundwater processes. These studies also provide regional baseline groundwater datasets that can inform environmental monitoring, resource use and decision making. During 2017 and 2018 Geoscience Australia collected 38 groundwater samples and 80 surface water samples (including quality control samples) to evaluate groundwater system processes including potential flow paths, recharge and groundwater-surface water-interactions. These surveys were conducted across three months of fieldwork, sampling water for a comprehensive suite of hydrogeochemical parameters. The present report includes surface water and groundwater data and information on: 1) sampling sites; 2) field physicochemical parameters (EC, pH, Eh, DO and T); 3) field measurements of total alkalinity (HCO3-); 4) laboratory results of major anion and cation results; 5) laboratory results for isotopes of water (δ18O and δD), DIC (δ13C), and dissolved strontium (87Sr/86Sr); and 6) hydrogeochemical maps representing the spatial distribution of these parameters. Pending analyses include: CFCs, SF6 and radiogenic isotopes δ14C and δ36Cl. Analysis that were largely below detection limit include: trace element concentrations, dissolved sulfide (S2-), ferrous iron (Fe2+), and dissolved sulfate (affecting sampling of δ34S and δ18O). This study demonstrates that hydrogeochemistry surveys, with full suites of chemical parameters including isotopes, can reveal fundamental groundwater system processes such as groundwater flow paths, groundwater recharge and groundwater-surface water interactions. The chemical ‘fingerprints’ identified here indicate groundwater flow paths are largely restricted to within the MBP and NBP aquifers, which have little interaction with adjacent and underlying non-basaltic rocks. The results also indicate groundwater is largely recharged from rainfall in higher elevations of the basalt provinces, with variable rainfall inputs to groundwater from lower elevation and rivers along flow paths. Groundwater-surface water interactions show several chemical signatures linking groundwater to springs, tributary rivers and the Burdekin River. Results from the Upper Burdekin Hydrogeochemistry Survey for the MBP and NBP have been plotted and mapped with initial interpretations presented below. Further detailed interpretation of this hydrogeochemistry data will be the focus of future publications. This data release is part in a series of staged outputs from the EFTF program. Relevant data, information and images are available through the Geoscience Australia website.