From 1 - 10 / 215
  • The datasets measure the Euphotic Depth (Zeu) of Australian oceans. They are derived products from MODIS (aqua) images using NASA's SeaDAS image processing software. The extent of the datasets covers the entire Australian EEZ and surrounding waters (including the southern ocean). The spatial resolution of the datasets is 0.01 dd. The datasets contain 36 monthly Zeu layers between 2009 and 2011. The unit of the datasets is metre.

  • Topographic Slope grid represents the slope angle (in degree) of an area of seabed. It was created from the bathymetry grid obtained from the survey onboard the Mattew Flinders in 2011. Please see the metadata of the bathymetry grid for details (GeoCat no: 74915).

  • As part of Geoscience Australia's commitment towards the National Environmental Programme's Marine Biodiversity Hub, we have developed a fully four-dimensional (3D x time) Lagrangian biophysical dispersal model to simulate the movement of marine larvae over large, topographically complex areas. The model operates by fusing the results of data-assimilative oceanographic models (e.g. BLUELink, HYCOM, ROMS) with individual-based particle behaviour. The model uses parallel processing on Australia's national supercomputer to handle large numbers of simulated larvae (on the order of several billion), and saves positional information as points within a relational database management system (RDBMS). The model was used to study Australia's northwest marine region, with specific attention given to connectivity patterns among Australia's north-western Commonwealth Marine Reserves and Key Ecological Features (KEFs). These KEFs include carbonate terraces, banks and reefs on the shelf that support diverse benthic assemblages of sponges and corals, and canyons that extend from the shelf edge to the continental slope and are potential biodiversity hotspots. We will show animations of larval movement near canyons within the Gascoyne CMR; larval dispersal probability clouds partitioned by depth and time; as well as matrices of connectivity values among features of interest. We demonstrate how the data can be used to identify connectivity corridors in marine environments, and how the matrices can be analysed to identify key connections within the network. Information from the model can be used to inform priorities for monitoring the performance of reserves through examining net contributions of different reserves (i.e. are they sources or sinks), and studying changes in connectivity structure through adding and removing reserve areas.

  • A short film describing the processes of bathymetric mapping and side scan sonar, used to gather data within the search area for missing Malaysia Airlines flight MH370. Synopsis: The film begins with a brief description of Geoscience Australia's role working with the lead agencies in the search process. It explains that existing satellite data is not detailed enough to assist in the search for MH370 and that more detailed bathymetric surveying is required before an underwater search can commence. The film describes how a bathymetric survey is carried out using sonar systems mounted on a ship's hull. It then shows imagery derived from the bathymetric mapping of the search area. The film then shows how a detailed underwater search is carried out, using the bathymetry as a guide. Animation shows how a towed, submersible vehicle gathers more detailed data while travelling slowly at a height of approximately 100 metres above the sea floor. The animation shows how side scan sonar reveals more detailed information about sea floor features. The film ends with a brief summary of the role of the Australian Government agencies involved in the search. Brief credits follow with a copyright statement and publication information. About the data visualisation: This video contains data visualisation and animation sequences. Bathymetry visualisations are derived from data gathered within the MH370 search area. Side scan sonar visualisations are derived from demonstration data only, not gathered within the MH370 search area. Animation sequences showing ship-mounted bathymetry and towed side-scan sonar are representations only and not to scale. Film production credits: Geoscience Australia Script, Direction: Bobby Cerini, Melinda Holland Edit, Cinematography, Sound: Michael O'Rourke Production Management: Bobby Cerini, Neil Caldwell 3D Data Visualisation, Animation: Neil Caldwell, Michael de Hoog Graphics: Kath Hagan Scientific Advice: Stuart Minchin, Anna Potter, Maggie Tran, Tanya Whiteway, Kim Picard Additional credits: Voiceover: Media Sound Studios Music: 'Namaste' by Jason Shaw, 2013 Animation of Globe: 'Earth in Cycles' by Adriano, 2012 3D Data Visualisation and Animation (ship, bathymetry, side scan, ocean features): Eye Candy Animation Producer: Damian Stocks Creative Director: Rachael Johnson Studio Manager: Jess Burrows Lead Artist: Artur Piwko 3D Artist: Kynan Stevenson

  • The datasets measure the K490 parameter (Downwelling diffuse attenuation coefficient at 490 nm, a turbidity parameter) of Australian oceans. They are derived products from MODIS (aqua) images using NASA's SeaDAS image processing software. The extent of the datasets covers the entire Australian EEZ and surrounding waters (including the southern ocean). The spatial resolution of the datasets is 0.01 dd. The datasets contain 36 monthly k490 layers between 2009 and 2011. The unit of the datasets is 1/m.

  • The shallow-water (<160m) marine environment around the Australian research station, Casey station (east Antarctica) is a high use area, frequently visited by both large resupply vessels and smaller workboats conducting scientific research in the area, yet high resolution modern bathymetric data in the area, as well as much of the east Antarctic continental margin, is limited. The Casey area hosts significant levels of biodiversity, but this knowledge is geographically restricted in scope (i.e. shallow depths, close to shore). This biodiversity faces pressures from human activities and effects of climate change, yet extensive knowledge gaps remain, limiting efforts to conserve and manage it effectively. Improved bathymetric surveying in this region will begin to fill these knowledge gaps by conducting representative sampling of both the physical environment and biological communities and reduce the risk to maritime operations in the region. During the period December 2014 to February 2015, a collaborative multibeam survey (Australian Antarctic Division, Royal Australian Navy and Geoscience Australia) was conducted in the shallow-water near-shore regions adjacent to Casey station and covered an area of ca. 28 km2. The survey employed Geoscience Australia's KONGSBERG EM3002 dual head sonar system mounted on an Australian Antarctic Division supplied science workboat, the RV Howard Burton. In total, the surveyed region covered ca. 34 km2, to a maximum depth of ca. 170m. The data was processed in CARIS v8 and a seafloor surface has been gridded at a resolution of 1m. Preliminary field-based interpretation of the submarine geomorphology reveal several dominant geomorphological features which can be simplified into 4 domains as follows: (1) NW and WSW trending fault and channel systems, (2) glacio-fluvial seafloor features (possible terminal moraines) within channel features, (3) bedrock basement highs and (4) `deep isolated basins.

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.

  • The extent to which low-frequency sound from marine seismic surveys impacts marine fauna is a subject of growing concern. The predominant frequency range of seismic airgun emissions is within the hearing range of cetaceans, reptiles, and fishes, and it can also elicit a neurological response in some invertebrates. Offshore seismic surveys have long been considered to be disruptive to fisheries, but comparatively few studies target commercially important species in realistic exposure scenarios. One of the main challenges in underwater sound impact studies is the meaningful translation of laboratory results to the field. Underwater sound properties are affected by the sound source, as well as characteristics of the water column, substrate, and biological communities. The experimental set-up is also critical in determining accurate response measurements, and design features of holding tanks can lead to misinterpretation of results, particularly related to behaviour. It may be tempting to simplify laboratory results to show effect or no effect, where results should instead be interpreted in the context of realistic exposure scenarios and field conditions. This project was developed in response to concerns raised by the fishing industry during stakeholder consultation in the lead up to a proposed seismic survey in the Gippsland Basin (Victoria, Australia), in addition to a broader need to acquire baseline data that may be used to quantify potential impacts of seismic operations on marine organisms. The project involves seven experimental components conducted before, during and after the seismic survey in both control and experimental areas of the Gippsland Basin: 1) Theoretical noise modelling, 2) Field-based noise monitoring and modelling, 3) Image acquisition by Autonomous Underwater Vehicle (AUV), 4) Bivalve sampling by dredging, 5) Fish movement analysis by tagging, 6) Catch rate analysis, and 7) Environmental modelling during the 2010 mortality event. In this presentation, we describe these components and critically review our current understanding of low-frequency sound impact on marine fish and invertebrates.

  • Submarine canyons influence oceanographic processes, sediment transport, productivity and benthic biodiversity from the continental shelf to the slope and beyond. The relative influence of an individual canyon on these processes will, in part, be determined by its form, shape and position on the continental margin. Based on the latest bathymetry data for the Australian margin, we have mapped 753 submarine canyons and derived a large number of geomorphic metrics based on canyon form, shape and position. In this presentation we highlight key results, which show that these canyon metrics describe a wide variety of canyon form and physical complexity that is consistent with the geological evolution of the Australian margin and the local influence of geological and geomorphological processes. Thus, Australian submarine canyons cluster in the east, southeast, west and southwest where the margin is steepest and continental shelf is narrow. Subsequently, we used 22 environmental variables (including many of the geomorphic metrics) as surrogates to derive estimates of habitat potential for these submarine canyons. Our analysis shows that the high geomorphic and oceanographic diversity of Australian submarine canyons creates a multitude of potential habitat types, notably for benthic infaunal and epifaunal communities. Canyons with particularly high benthic habitat potential are located mainly offshore of the Great Barrier Reef and the New South Wales coast, on the eastern margin of Tasmania and Bass Strait, and on the southern Australian margin. Many of these canyons have complex bottom topography, are likely to have high primary and secondary production, and have less potential for sediment disturbance due to bottom current. Canyons that incise the shelf tend to score higher in habitat potential than those confined to the slope. This habitat potential is exemplified by Perth Canyon, a large shelf-incising canyon on the southwest Australian margin, which we present in this talk as a case study. High-resolution (20m) multibeam sonar data for the canyon reveals the geomorphic complexity characterised by escarpments, transverse ridges, large-scale mass movements and active bedform fields. This geodiversity and the interaction of the Perth Canyon with regional oceanographic currents (the Leeuwin Current and Undercurrent) provide highly diverse habitats for benthic fauna such as deep-sea corals and sponges and a variety of pelagic fauna including cetaceans (e.g., Australian pygmy blue whales, minke whales, sharks and tunas). Abstract submitted to/presented at the 2018 International Network for Submarine Canyon Investigation and Scientific Exchange (INCISE) Symposium (https://www.incisenet.org/)

  • The datasets measure the Sea Surface Temperature (SST) of Australian oceans. They are derived products from MODIS (aqua) images using NASA's SeaDAS image processing software. The extent of the datasets covers the entire Australian EEZ and surrounding waters (including the southern ocean). The spatial resolution of the datasets is 0.01 dd. The datasets contain 126 monthly SST layers between 2002 and 2012.