radiometrics
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Geoscience Australia has developed an interactive 3D viewer for three national datasets; the new Radiometric Map of Australia (Geoscience Australia 2009b), the Magnetic Anomaly Map of Australia (Geoscience Australia 2004), and the Gravity Anomaly Map of the Australian Region (Geoscience Australia 2008). The interactive virtual globe is based on NASA's open source World Wind Java Software Development Kit (SDK) and provides users with easy and rich access to these three national datasets. Users can view eight different representations of the radiometric map and compare these with the magnetic and gravity anomaly maps and satellite imagery; all draped over a digital elevation model. The full dataset for the three map sets is approximately 55GB (in ER Mapper format), while the compressed full resolution images used in the virtual globe total only 1.6GB and only the data for the geographic region being viewed is downloaded to users computers. This paper addresses the processes for selecting the World Wind application over other solutions, how the data was prepared for online delivery, the development of the 3D Viewer using the Java SDK, issues involving connecting to.
-
The Radiometric Map of Australia dataset comprises grids of potassium, uranium, and thorium element concentrations, and derivatives of these grids, that were derived by seamlessly merging over 550 airborne gamma-ray spectrometric surveys in the national radioelement database
-
Geoscience Australia is a proscribed agency of the Australian Government, and has been acquiring precompetitive geophysics over the Australian continent and making it available to industry and researchers for over fifty years. Geophysical methods are especially important for effective exploration in Australia because the ancient landscape has been deeply weathered and fresh rocks are concealed beneath a thick layer of weathered material, referred to as regolith. The Onshore Energy Security Program is Geoscience Australia's latest precompetitive program and is designed to reduce risk in exploration for Australia's onshore hydrocarbon, uranium, thorium, and geothermal energy resources. The program will acquire and deliver pre-competitive geophysical and geochemical data as well as geological interpretations and other value-added products for the exploration industry.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). This radiometric uranium image has a cell size of 0.0004 degrees (approximately 41m) and shows uranium element concentration of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 in units of parts per million (or ppm). Noise-adjusted singular value decomposition (NASVD) has been applied to the data. NASVD is a spectral component analysis procedure for the removal of noise from gamma-ray spectra. The data used to produce this image was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The total dose rate is due to natural sources of radiation and is computed by adding estimates of cosmic dose at ground level to the terrestrial dose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered total dose rate grid. This Gawler Craton Airborne Survey Merge Radiometrics has a cell size of 0.0004 degrees (approximately 41m) and shows the total dose rate of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 survey. The data used to produce this grid was acquired in 2017-2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). nThis radiometric potassium image has a cell size of 0.0004 degrees (approximately 41m) and shows potassium element concentration of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 in units of percent (or %). The data used to produce this image was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.
-
Spectral data from airborne and ground surveys enable mapping of the mineralogy and chemistry of soils in a semi-arid terrain of Northwest Queensland. The study site is a region of low relief, 20 km southeast of Duchess near Mount Isa. The airborne hyperspectral survey identified more than twenty surface components including vegetation, ferric oxide, ferrous iron, MgOH, and white mica. Field samples were analysed by spectrometer and X-ray diffraction to test surface units defined from the airborne data. The derived surface materials map is relevant to soil mapping and mineral exploration, and also provides insights into regolith development, sediment sources, and transport pathways, all key elements of landscape evolution.
-
The Onshore Energy Security Program (OESP) announced by the Australian Government in 2006 is a major initiative to encourage exploration for energy resources in Australia. Geoscience Australia will receive funding of $59 million over five years for data acquisition and scientific programs focussed on petroleum, uranium, thorium, and geothermal energy systems. National scale surveys such as the Australia Wide Geophysical Survey (AWAGS) will provide uniform, objective data for assessing the energy potential of terrains across the continent. Geological provinces considered prospective for energy commodities are being targeted by regional projects based around the acquisition of seismic\MT and other data. A mineral-systems approach is being used to assess the uranium and geothermal prospectivity of the Mt Isa and Georgetown regions of north Queensland, and interpret the results of an extensive seismic\MT acquisition program. Interpretation of these data is providing new insights into these provinces which have been under-explored for energy.
-
A map showing the distribution of selected mines and mineral depsosits for a range of commodities. It also shows the distribution of petroleum resources in basic form. The map base is the Radiometric Map of the Australian Region
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00045 degrees (approximately 47m) and shows uranium element concentration of the Coonabarabran Airborne Magnetic Radiometric and DEM Survey, NSW, 2017 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2017 by the NSW Government, and consisted of 50961 line-kilometres of data at 250m line spacing and 60m terrain clearance.