From 1 - 10 / 3691
  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.0005 degrees (approximately 50m) and shows uranium element concentration of the Merredin-Bruce Rock, WA, 1997 survey. The data used to produce this grid was acquired in 1997 by the WA Government, and consisted of UNKNOWN line-kilometres of data at 150m line spacing and 50m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.0005 degrees (approximately 50m) and shows potassium element concentration of the TEISA - Area M1, SA, 2000 (Woodroffe Region) survey. The data used to produce this grid was acquired in 2000 by the SA Government, and consisted of 92000 line-kilometres of data at 200m line spacing and 80m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.000417 degrees (approximately 40m) and shows potassium element concentration of the Forbes Detail, NSW, 1993, Halls Creek Area, WA, 1959 survey. The data used to produce this grid was acquired in 1993 by the NSW, WA Government, and consisted of 49055, 18750 line-kilometres of data at 200, 320m line spacing and 100, 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.001 degrees (approximately 100m) and shows potassium element concentration of the Northern Callabonna, SA, 2001 (TEISA) survey. The data used to produce this grid was acquired in 2001 by the SA Government, and consisted of UNKNOWN line-kilometres of data at 400m line spacing and 50m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.004 degrees (approximately 410m) and shows potassium element concentration of the Albany-Fraser (Esperance, Malcolm), WA, 1981 survey. The data used to produce this grid was acquired in 1981 by the WA Government, and consisted of 20797 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.001 degrees (approximately 100m) and shows potassium element concentration of the SA Exploration Initiative - Area B, (B1- B4) SA, 1993 survey. The data used to produce this grid was acquired in 1993 by the SA Government, and consisted of 74735 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.004 degrees (approximately 410m) and shows thorium element concentration of the West Eucla Basin (Culver), WA, 1983 survey. The data used to produce this grid was acquired in 1983 by the WA Government, and consisted of 9699 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.000833 degrees (approximately 90m) and shows thorium element concentration of the Sandstone, WA, 2000 survey. The data used to produce this grid was acquired in 2000 by the WA Government, and consisted of 28390 line-kilometres of data at 400m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.000614 degrees (approximately 60m) and shows thorium element concentration of the Marulan-Mossvale, NSW, 1998 survey. The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 1600 line-kilometres of data at 250m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.004 degrees (approximately 420m) and shows potassium element concentration of the Gympie, QLD, 1987 survey. The data used to produce this grid was acquired in 1987 by the QLD Government, and consisted of 13720 line-kilometres of data at 1500m line spacing and 150m terrain clearance.