From 1 - 10 / 2169
  • This DVD contains: 1/ The "Revealing Australia's Hidden Secrets" (GeoCat No. 68258) - a short movie which tells the story of the making of the Radiometric Map of Australia. (GeoCat No. 68207) 2/ Geoscience Australia's World Wind Viewer Application - an application based on NASA's World Wind that allows users to view data such as Radioelements, Gravity and Magnetic Anomaly over the Australian Terrain with Satellite imagery. The application references: a/ RADIOMETRIC MAP OF AUSTRALIA - 1ST EDITION, 2009 - GeoCat No. 68207 b/ MAGNETIC ANOMALY MAP OF AUSTRALIA - 4TH EDITION, 2004 - GeoCat No. 61703 c/ GRAVITY ANOMALY MAP OF THE AUSTRALIAN REGION - 3RD EDITION, 2008 GeoCat No. 65682

  • In most circumstances the conventional radioelement ratio method is sufficient for the enhancement of the differences between radioelement concentrations across map areas. However, there are areas where the range of radioelement concentration values are such that the ratio image is dominated by one or other of the radioelements. In this paper we demonstrate that, in some areas, the use of these ratios can be enhanced through suitable normalisation of the radioelement data prior to the calculation of ratios.

  • The aim of the NPE10 exercise is the continuation of the multi - technology approach started with NPE09. For NPE10, a simulated release of radionuclides was the trigger for the scenario in which an REB-listed seismo-acoustic event with ML between 3.0 and 4.8 was the source. Assumptions made were: A single seismo-acoustic signal-generating underground detonation event with continuous leak of noble gas, radionuclide detections only from simulated release. Using atmospheric transport modelling the IDC identified 48 candidate seismo-acoustic events from data fusion of the seismo-acoustic REBs with radionuclide detections. We were able to reduce the number of candidate seismo-acoustic point sources from 48 to 2 by firstly rejecting events that did not appear consistently in the data fusion bulletins; secondly, reducing the time-window under consideration through analysis of xenon isotope ratios; and thirdly, by clustering the remaining earthquakes and aftershocks and applying forward tracking to these (clustered) candidate events, using the Hy-split and ARGOS modelling tools. The two candidate events that were not screened by RN analysis were Wyoming REB events 6797924 (23-Oct) and 6797555 (24-Oct). Event 6797555 was identified as an earthquake on the basis of depth (identification of candidate depth phases at five teleseismic stations); regional Pn/Lg and mb:Ms - all indicating an earthquake source. Event 6797924, however, was not screened and from our analysis would constitute a candidate event for an On-Site Inspection under the Treaty.

  • The National Geochemical Survey of Australia (NGSA) provides the first national coverage of multi-element chemistry at a continental scale. The NGSA data is an important complement to other national-scale geological and geophysical datasets, particularly the Radiometric Map of Australia. The Radiometric Map of Australia shows potassium (K) measured directly from gamma-rays emitted when 40K decays to argon (40Ar), whereas thorium (Th) and uranium (U) do not emit gamma-rays. Instead, their abundances are inferred indirectly by measuring gamma-ray emissions associated with parent radionuclides (thallium-208 for Th, and bismuth-214 for U) within their radioactive decay chains. Airborne-derived grids provide a continuous prediction of these radioelements across the Australian landscape. In contrast, the NGSA data provide a series of precise single point geochemical measurements of surface (0-10 cm) and near-surface (~60-80 cm depth) unconsolidated catchment outlet sediments.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Loongana, WA, 2010 (Eucla Basin 2) (P1221), radiometric line data, AWAGS levelled were acquired in 2010 by the WA Government, and consisted of 114979 line-kilometres of data at 200m line spacing and 50m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Eucla Basin 4 Madura Doserate Grid Geodetic has a cell size of 0.00042 degrees (approximately 43m) and shows the terrestrial dose rate of the Madura, WA, 2010 (Eucla Basin 4). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 103672 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00042 degrees (approximately 43m) and shows potassium element concentration of the Madura, WA, 2010 (Eucla Basin 4) in units of percent (or %). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 103672 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00042 degrees (approximately 43m) and shows thorium element concentration of the Madura, WA, 2010 (Eucla Basin 4) in units of parts per million (or ppm). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 103672 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00042 degrees (approximately 43m) and shows uranium element concentration of the Madura, WA, 2010 (Eucla Basin 4) in units of parts per million (or ppm). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 103672 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Madura, WA, 2010 (Eucla Basin 4) (P1222), radiometric line data, AWAGS levelled were acquired in 2010 by the WA Government, and consisted of 103672 line-kilometres of data at 200m line spacing and 50m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.