From 1 - 10 / 414
  • On 23 March 2012, at 09:25 GMT, a MW 5.4 earthquake occurred in the eastern Musgrave Ranges region of north-central South Australia, near the community of Ernabella (Pukatja). Several small communities in this remote part of central Australia reported the tremor, but there were no reports of injury or significant damage. This was the largest earthquake to be recorded on mainland Australia for the past 15 years and resulted in the formation of a 1.6 km-long surface deformation zone comprising reverse fault scarps with a maximum vertical displacement of over 0.5 m, extensive ground cracking, and numerous rock falls. The maximum ground-shaking is estimated to have been in the order of MMI VI. The earthquake occurred in non-extended Stable Continental Region (SCR) cratonic crust, over 1900 km from the nearest plate boundary. Fewer than fifteen historic earthquakes worldwide are documented to have produced co-seismic surface deformation (i.e. faulting or folding) in the SCR setting. The record of surface deformation relating to the Ernabella earthquake therefore provides an important constraint on models relating surface rupture length to earthquake magnitude. Such models may be employed to better interpret Australia's rich prehistoric record of seismicity, and contribute to improved estimates of seismic hazard.

  • We report four lessons from experience gained in applying the multiple-mode spatially-averaged coherency method (MMSPAC) at 25 sites in Newcastle (NSW) for the purpose of establishing shear-wave velocity profiles as part of an earthquake hazard study. The MMSPAC technique is logistically viable for use in urban and suburban areas, both on grass sports fields and parks, and on footpaths and roads. A set of seven earthquake-type recording systems and team of three personnel is sufficient to survey three sites per day. The uncertainties of local noise sources from adjacent road traffic or from service pipes contribute to loss of low-frequency SPAC data in a way which is difficult to predict in survey design. Coherencies between individual pairs of sensors should be studied as a quality-control measure with a view to excluding noise-affected sensors prior to interpretation; useful data can still be obtained at a site where one sensor is excluded. The combined use of both SPAC data and HVSR data in inversion and interpretation is a requirement in order to make effective use of low frequency data (typically 0.5 to 2 Hz at these sites) and thus resolve shear-wave velocities in basement rock below 20 to 50 m of soft transported sediments.

  • This paper describes the methods used to define earthquake source zones and calculate their recurrence parameters (a, b, Mmax). These values, along with the ground motion relations, effectively define the final hazard map. Definition of source zones is a highly subjective process, relying on seismology and geology to provide some quantitative guidance. Similarly the determination of Mmax is often subjective. Whilst the calculation of a and b is quantitative, the assumptions inherent in the available methods need to be considered when choosing the most appropriate one. For the new map we have maximised quantitative input into the definition of zones and their parameters. The temporal and spatial Poisson statistical properties of Australia's seismicity, along with models of intra-plate seismicity based on results from neotectonic, geodetic and computer modelling studies of stable continental crust, suggest a multi-layer source zonation model is required to account for the seismicity. Accordingly we propose a three layer model consisting of three large background seismicity zones covering 100% of the continent, 25 regional scale source zones covering ~50% of the continent, and 44 hotspot zones covering 2% of the continent. A new algorithm was developed to calculate a and b. This algorithm was designed to minimise the problems with both the maximum likelihood method (which is sensitive to the effects of varying magnitude completeness at small magnitudes) and the least squares regression method (which is sensitive to the presence of outlier large magnitude earthquakes). This enabled fully automated calculation of a and b parameters for all sources zones. The assignment of Mmax for the zones was based on the results of a statistical analysis of neotectonic fault scarps.

  • A comprehensive earthquake impact assessment requires an exposure database with attributes that describe the distribution and vulnerability of buildings in the region of interest. The compilation of such a detailed database will require years to develop for a moderate-sized city, let alone on a national scale. To hasten this database development in the Philippines, a strategy has been employed to involve as many stakeholders/organizations as possible and equip them with a standardized tool for data collection and management. The best organizations to tap are the local government units (LGUs) since they have better knowledge of their respective area of responsibilities and have a greater interest in the use of the database. Such a tool is being developed by PHIVOLCS-DOST and Geoscience Australia. Since there are about 1,495 towns and cities in the country with varying financial capacities, this tool should involve the use of affordable hardware and software. It should work on ordinary hardware, such as an ordinary light laptop or a netbook that can easily be acquired by these LGUs. The hardware can be connected to a GPS and a digital camera to simultaneously capture images of structures and their location. The system uses an open source database system for encoding the building attributes and parameters. A user-friendly GUI with a simplified drop-down menu, containing building classification schema, developed in consultation with local engineers, is utilised in this system. The resulting national database is integrated by PHIVOLCS-DOST and forms part of the Rapid Earthquake Damage Assessment System (REDAS), a hazard simulation tool that is also made available freely to partner local government units.

  • The aim of the NPE10 exercise is the continuation of the multi - technology approach started with NPE09. For NPE10, a simulated release of radionuclides was the trigger for the scenario in which an REB-listed seismo-acoustic event with ML between 3.0 and 4.8 was the source. Assumptions made were: A single seismo-acoustic signal-generating underground detonation event with continuous leak of noble gas, radionuclide detections only from simulated release. Using atmospheric transport modelling the IDC identified 48 candidate seismo-acoustic events from data fusion of the seismo-acoustic REBs with radionuclide detections. We were able to reduce the number of candidate seismo-acoustic point sources from 48 to 2 by firstly rejecting events that did not appear consistently in the data fusion bulletins; secondly, reducing the time-window under consideration through analysis of xenon isotope ratios; and thirdly, by clustering the remaining earthquakes and aftershocks and applying forward tracking to these (clustered) candidate events, using the Hy-split and ARGOS modelling tools. The two candidate events that were not screened by RN analysis were Wyoming REB events 6797924 (23-Oct) and 6797555 (24-Oct). Event 6797555 was identified as an earthquake on the basis of depth (identification of candidate depth phases at five teleseismic stations); regional Pn/Lg and mb:Ms - all indicating an earthquake source. Event 6797924, however, was not screened and from our analysis would constitute a candidate event for an On-Site Inspection under the Treaty.

  • Abstract is too large to be pasted here. See TRIM link: D2011-144613

  • Legacy product - no abstract available