From 1 - 10 / 181
  • Categories  

    This GSV Omeo VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Omeo, Vic, 1995 VIMP Survey (GSV3056). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Omeo VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1995 by the VIC Government, and consisted of 13781 line-kilometres of data at 200m line spacing and 70m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Corryong VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Corryong, Vic, 1995 VIMP Survey (GSV3059). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Corryong VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1995 by the VIC Government, and consisted of 17613 line-kilometres of data at 200m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Dargo VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Dargo, Vic, 1996 VIMP Survey (GSV3061). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Dargo VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1995 by the VIC Government, and consisted of 25965 line-kilometres of data at 200m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Wangaratta South VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the South Wangaratta, Vic, 1996 VIMP Survey (GSV3068). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Wangaratta South VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1996 by the VIC Government, and consisted of 43676 line-kilometres of data at 200m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Yea VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Yea, Vic, 1997 VIMP Survey (GSV3070). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Yea VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1997 by the VIC Government, and consisted of 14605 line-kilometres of data at 200m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Woodend Castlemaine VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Castlemaine, Woodend, Nth Bacchus Marsh, Vic, 1997 VIMP Survey (GSV3071). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Woodend Castlemaine VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1996 by the VIC Government, and consisted of 38794 line-kilometres of data at 200m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Mildura VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Mildura, Vic, 1994 VIMP Survey (GSV3019). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Mildura VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1994 by the VIC Government, and consisted of 51663 line-kilometres of data at 400m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Mallacoota VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Mallacoota, Eastern Highlands, Vic, 1994/95 VIMP Survey (GSV3021). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Mallacoota VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 49m). The data used to produce this grid was acquired in 1994 by the VIC Government, and consisted of 33359 line-kilometres of data at 200m line spacing and 70m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Glenelg VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Glenelg, Vic, 1995 VIMP Survey (GSV3053). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Glenelg VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 49m). The data used to produce this grid was acquired in 1994 by the VIC Government, and consisted of 24973 line-kilometres of data at 200m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    This GSV Mansfield VIMP Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Mansfield, Vic, 1999 VIMP Survey (GSV3149). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Mansfield VIMP Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1999 by the VIC Government, and consisted of 45697 line-kilometres of data at 200m line spacing and 80m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.