From 1 - 10 / 84
  • Potential impacts of climate change present significant challenges for land use planning, emergency management and risk mitigation across Australia. Even in current climate conditions, the Rockhampton Regional Council area is subject to the impacts of natural hazards, such as bushfires, floods, and tropical cyclones (extreme winds and storm surge). All of these hazards may worsen with climate change. To consider future climate hazard within council practices, the Rockhampton Regional Council received funding from the National Climate Change Adaptation Research Grants Program Project for a project under the Settlements and Infrastructure theme. This funding was provided to evaluate the ability of urban planning principles and practices to accommodate climate change and the uncertainty of climate change impacts. Within this project, the Rockhampton Regional Council engaged Geoscience Australia to undertake the modelling of natural hazards under current and future climate conditions. Geoscience Australia's work, within the broader project, has utilised natural hazard modelling techniques to develop a series of spatial datasets describing hazards under current climate conditions and a future climate scenario. The following natural hazards were considered: tropical cyclone wind, bushfire, storm tide, coastal erosion and sea-level rise. Outputs of this project include a report, hazard maps and digital spatial data.

  • This report describes a detailed assessment of coastal vulnerability and infrastructure exposure undertaken for Mandurah local government area (LGA) to complement the analyses in the National Coastal Risk Assessment. The assessment modelled both storm surge and coastal recession. The hydrodynamic storm surge modelling conditions were based on those observed during TC Alby (1978) and included scenarios with the storm track shifted to create maximum impact of the wind field on Mandurah, and sea-level rise scenarios from 0.0 m (current climate) to 1.1 m. Potential shifts in the shoreline position were modelled based on changes in the sediment transport regime under sea-level rise. The resulting inundation from the modelled surge and erosion event was projected onto the coastline to give impact 'footprints' for each event. These footprints were overlaid with built asset data from Geoscience Australia's National Exposure Information System (NEXIS), as well as road, railway and bridge infrastructure. The storm modelling exposure analysis found that if the 1978 Tropical Cyclone Alby storm were to directly impact Mandurah LGA today then approximately 560 buildings are exposed to storm-tide inundation. This exposure increases to nearly 3,000 buildings when factoring in a rise in sea level of 1.1m by 2100. Within the area modelled to be potentially subject to erosion due to sea-level rise by 2030 there are between 140 and 800 buildings. However, by 2100 the range increases to between 2,300 and 4,100 buildings. This study has provided fundamental coastal process predictions that can better enable adaptation plans; and a benchmark of coastal vulnerability to inundation and erosion for the City of Mandurah against which the success of future adaptation initiatives can be measured. With refinements, the modelling methodology presented here is capable of being utilised across Australia to further quantify our coastal vulnerability.

  • Australian hourly temperature, humidity and pressure data as produced by the Bureau of Meteorology. Dataset contains: Air Temperature; Dew Point Temperature; Wet Bulb Temperature; Relative Humidity; Mean Sea Level Pressure; Station Level Pressure; Saturated Vapour Pressure; plus additional supporting information.

  • Australian Daily Wind Data as produced by the Bureau of Meteorology. Dataset contains: Mean daily wind speed; Daily maximum wind gust; Daily wind run from instruments at a height below 3 metre; Daily wind run from instruments at a height above 3 metre; plus additional supporting information.

  • Australian present and past weather data as produced by the Bureau of Meteorology. Dataset contains: Present weather data as international code; Past weather data as international code; plus additional supporting information.

  • Geoscience Australia is the national custodian for coastal geoscientific data and information. The organisation developed the OzCoasts web-based database and information system to draw together a diverse range of data and information on Australia's coasts and its estuaries. Previously known as OzEstuaries, the website was designed with input from over 100 scientists and resource managers from more than 50 organisations including government, universities and the National Estuaries Network. The former Coastal CRC and National Land and Water Resources Audit were instrumental in coordinating communication between the different agencies. Each month approximately 20,000 unique visitors from more than 140 countries visit the website to view around 80,000 pages. Maps, images, reports and data can be downloaded to assist with coastal science, monitoring and management. The content is arranged into six inter-linked modules: Search Data, Conceptual Models, Coastal Indicators, Habitat Mapping, Natural Resource Management, Landform and Stability Maps. More....

  • Geoscience Australia, in collaboration with the Department of Climate Change and Energy Efficiency (DCCEE), has conducted a preliminary study to investigate the risk posed to Australian communities by severe winds, both in the current climate and under a range of future climate scenarios. This National Wind Risk Assessment (NWRA) represents the first national-scale assessment of severe wind risk, using consistent information on residential buildings and severe wind hazard. The NWRA has produced an understanding of severe wind hazard for the whole Australian continent, including extreme winds caused by tropical cyclones, thunderstorm downbursts and synoptic storms. New modelling and analysis techniques have been applied to the results of Intergovernmental Panel on Climate Change (IPCC) climate modelling efforts to enable assessment of regional wind hazard to the end of the 21st century for four case study regions: Cairns, southeast Queensland, Hobart and Perth. In developing adaptation options, it is essential to have an understanding of the existing risk, and the risk at future times if no action is taken. Adaptation options can then be assessed on their cost versus benefit (i.e. reduction in risk). The NWRA presents methods by which the effectiveness of adaptation to improve residential building resilience may be assessed in economic terms. The study also recognises it is important that the outcomes of the risk analysis are communicated in such a way that the results are easily understood and utilised to support evidence-based policy.

  • A statistical downscaling approach is used to compare changes in environmental indicators of tropical cyclone characteristics between three greenhouse gas emissions scenarios in the Australian region, using results from models used for the IPCC 4th Assessment Report. Maximum potential intensity is shown to change linearly with global mean temperature, independent of emissions scenario, with a 2-3% increase per degree of global warming in Australia's tropical regions. Changes in vertical wind shear are more ambiguous, however the magnitude of changes in tropical cyclone genesis regions is small. The genesis potential index increases significantly in all scenarios, and appears to be driven by the increase in MPI. Results for Australia's tropical regions suggest that tropical cyclone intensity is highly likely to increase with global warming, while results for frequency are suggestive of a frequency increase, but less conclusive. Further work to assess frequency changes will allow quantification of changes in tropical cyclone hazard under climate change.

  • The middle to lower Jurassic sequence in Australia's Surat Basin has been identified as a potential reservoir system for geological CO2 storage. The sequence comprises three major formations with distinctly different mineral compositions, and generally low salinity formation water (TDS<3000 mg/L). Differing geochemical responses between the formations are expected during geological CO2 storage. However, given the prevailing use of saline reservoirs in CCS projects elsewhere, limited data are available on CO2-water-rock dynamics during CO2 storage in such low-salinity formations. Here, a combined batch experiment and numerical modelling approach is used to characterise reaction pathways and to identify geochemical tracers of CO2 migration in the low-salinity Jurassic sandstone units. Reservoir system mineralogy was characterized for 66 core samples from stratigraphic well GSQ Chinchilla 4, and six representative samples were reacted with synthetic formation water and high-purity CO2 for up to 27 days at a range of pressures. Low formation water salinity, temperature, and mineralization yield high solubility trapping capacity (1.18 mol/L at 45°C, 100 bar), while the paucity of divalent cations in groundwater and the silicate reservoir matrix results in very low mineral trapping capacity under storage conditions. Formation water alkalinity buffers pH at elevated CO2 pressures and exerts control on mineral dissolution rates. Non-radiogenic, regional groundwater-like 87Sr/86Sr values (0.7048-0.7066) indicate carbonate and authigenic clay dissolution as the primary reaction pathways regulating solution composition, with limited dissolution of the clastic matrix during the incubations. Several geochemical tracers are mobilised in concentrations greater than found in regional groundwater, most notably cobalt, concentrations of which are significantly elevated regardless of CO2 pressure or sample mineralogy.

  • A review commissioned by the Council of Australian Governments (COAG) in June 2001 entitled 'Natural Disasters in Australia: reforming mitigation, relief and recovery arrangements' concluded that a new approach to natural disasters in Australia was needed. While disaster response and reaction plans remain important, there is now a greater focus towards anticipation of mitigation against natural hazards, involving a fundamental shift in focus beyond relief and recovery towards cost-effective, evidence-based disaster mitigation. This new approach now includes an assessment of the changes in frequency and intensity of natural hazard events that are influenced by climate change, and aims to achieve safer, more sustainable Australian communities in addition to a reduction in risk, damage and losses from future natural disasters. Geoscience Australia (GA) is developing risk models and innovative approaches to assess the potential losses to Australian communities from a range of sudden impact natural hazards. GA aims to define the economic and social threat posed by a range of rapid onset hazards through a combined study of natural hazard research methods and risk assessment models. These hazards include earthquakes, cyclones, floods, landslides, severe winds and storm surge/tsunami. This presentation provides an overview of the risk that peak wind gusts pose to a number of Australian communities (major capital cities), and for some cities examines how climate change may affect the risk (utilising modelling underpinned by a small subset of the IPCC greenhouse gas emission scenarios).