From 1 - 10 / 190
  • The 2021 Offshore Greenhouse Gas Storage Acreage Release is a key strategy of the Australian Government to reduce emissions and support Australia's resource sector. The GHG acreage release will provide companies the opportunity to explore for offshore carbon dioxide injection and storage locations. The 2021 GHG acreage release consists of 5 areas across the Bonaparte, Browse and Northern Carnarvon Basins.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • The service contains all maritime boundaries treaties signed by Australia (NOT ALL ARE IN FORCE). Where the original datum of the treaty is not specified as GDA94, all defined points have been transformed by Geoscience Australia's National Geospatial Reference Systems Section to GDA94.

  • OPGGSA 2006 - Petroleum Blocks. This service displays the most recent realisation of the Petroleum Blocks as defined under Section 33 (3) of the Offshore Petroleum and Greenhouse Gas Storage Act 2006 (OPGGSA 2006) as realised in GDA94. Block data extends beyond the area of operation of the OPGGSA and includes areas of coastal waters and land within the constitutional limits of the States and Territories.

  • Offshore Minerals Act (OMA 1994) - Mineral Blocks. This service displays the most recent realisation of the Mineral Blocks as defined under the Offshore Minerals Act 1994 (OMA 1994) as realised in GDA94. Block data extends beyond the area of operation of the OMA and includes areas of coastal waters and land within the constitutional limits of the States and Territories.

  • Geoscience Australia and Monash University have produced a series of renewable energy capacity factor maps of Australia. Solar photovoltaic, concentrated solar power, wind (150 m hub height) and hybrid wind and solar capacity factor maps are included in this web service. Solar Photovoltaic capacity factor map The minimum capacity factor is <10% and the maximum is 25%. The map is derived from Bureau of Meteorology (2020) data. The scientific colour map is sourced from Crameri (2018). Concentrated Solar Power capacity factor map The minimum capacity factor is 52% and the maximum is 62%. The map is derived from Bureau of Meteorology (2020) data. Minimum exposure cut-off values used are from International Renewable Energy Agency (2012) and Wang (2019). The scientific colour map is sourced from Crameri (2018). Wind (150 m hub height) capacity factor map The minimum capacity factor is <15% and the maximum is 42%. The map is derived from Global Modeling and Assimilation Office (2015) and DNV GL (2016) data. The scientific colour map is sourced from Crameri (2018). Hybrid Wind and Solar capacity factor maps Nine hybrid wind and solar maps are available, divided into 10% intervals of wind to solar ratio (eg. (wind 40% : solar 60%), (wind 50% : solar 50%), (wind 60% : solar 40%) etc.). The maps show the capacity factor available for electrolysis. Wind and solar plants might be oversized to increase the overall running time of the hydrogen plant allowing the investor to reduce electrolyser capital expenditures for the same amount of output. Calculations also include curtailment (or capping) of excess electricity when more electricity is generated than required to operate the electrolyser. The minimum and maximum capacity factors vary relative to a map’s specified wind to solar ratio. A wind to solar ratio of 50:50 produces the highest available capacity factor of 64%. The maps are derived from Global Modeling and Assimilation Office (2015), DNV GL (2016) and Bureau of Meteorology (2020) data. The scientific colour map is sourced from Crameri (2018). Disclaimer The capacity factor maps are derived from modelling output and not all locations are validated. Geoscience Australia does not guarantee the accuracy of the maps, data, and visualizations presented, and accepts no responsibility for any consequence of their use. Capacity factor values shown in the maps should not be relied upon in an absolute sense when making a commercial decision. Rather they should be strictly interpreted as indicative. Users are urged to exercise caution when using the information and data contained. If you have found an error in this dataset, please let us know by contacting clientservices@ga.gov.au.

  • This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).

  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The areas shown have been nominated by petroleum industry stakeholders to be considered for the 2022 acreage release. Areas nominated for release will not receive endorsement from government until submissions resulting from a public consultation process can be considered. This publication does not indicate a commitment to a particular course of action.

  • Australia's Land Borders is a product within the Foundation Spatial Data Framework (FSDF) suite of datasets. It is endorsed by the ANZLIC – the Spatial Information Council and the Intergovernmental Committee on Surveying and Mapping (ICSM) as the nationally consistent representation of the land borders as published by the Australian states and territories. It is topologically correct in relation to published jurisdictional land borders and the Geocoded National Address File (G-NAF). The purpose of this product is to provide: (i) a building block which enables development of other national datasets; (ii) integration with other geospatial frameworks in support of data analysis; and (iii) visualisation of these borders as cartographic depiction on a map. Although this service depicts land borders, it is not nor does it suggests to be a legal definition of these borders. Therefore it cannot and must not be used for those use-cases pertaining to legal context.

  • This is a proof of concept web service displaying trial samples of historic flood mapping from satellite. Over the next 2 years this service will be developed into a nationwide portal displaying flooding across Australia as observed by satellite since 1987. The service shows a summary of water observed by the Landsat-5 and MODIS satellites across Australia for periods between 2000 and 2012. The first layer set displays national observed water from MODIS fvrom 2000 to 2012, as derived by Geoscience Australia using an automated flood mapping algorithm. The colouring of the display represents the frequency of observed water in a 500 x 500m grid. The higher the number, the more often water was observed by the satellites over the period. This means that floods have low values, while lakes, dams and other permanent water bodies have high values. The three additional layer sets are study areas demonstrating the water observed in each study area by the Landsat-5 satellite, as derived by Geoscience Australia using an automated flood mapping algorithm. The study areas and the observation periods are: Study Area 1, Condamine River system between Condamine and Chinchilla, Qld, observed between 2006 and 2011 Study Area 2, North-west Victorian rivers between Shepparton and Kerang, observed between 2006 and 2011 Study Area 3, Northern Qld rivers, near Normanton, observed between 2003 and 2011 Each Study Area layer set includes a water summary displaying the frequency of observed water in 25 x 25m grids, plus individual flood extents for specific dates where flooding was observed. Similar to the national, MODIS summary, the higher the value, the more often water was observed by the satellites over the period. Limitations of the Information The automated flood mapping algorithm can confuse cloud shadows and snow with flood water, so some areas shown as water may be incorrect. This is a proof of concept dataset and has not been validated.