From 1 - 10 / 80
  • The Bushfire Attack Level Toolbox provides access to ArcGIS geoprocessing scripts that calculate the Bushfire Attack Level (BAL) as per Method 1 in AS-3959 (2009). BAL is a measure of the severity of a building's potential exposure to ember attack, radiant heat and direct flame contact in the event of a bushfire. It serves as a basis for establishing the requirements for construction to improve protection of building elements from attack by bushfire. The BAL Toolbox User GUIDE provides users an overvoew of the Toolbox, instructions on installation, any customisations, execution and evaluation of results.

  • The Bushfire Attack Level Toolbox provides access to ArcGIS geoprocessing scripts that calculate the Bushfire Attack Level (BAL) as per Method 1 in AS-3959 (2009). BAL is a measure of the severity of a building's potential exposure to ember attack, radiant heat and direct flame contact in the event of a bushfire. It serves as a basis for establishing the requirements for construction to improve protection of building elements from attack by bushfire. The BAL Maps and Exposure report provide maps of three communities in Western Australia, with indicative BAL levels, and the aggregate inventory of assets and population exposed to the different levels of BAL.

  • The Australian Solar Energy Information System V3.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V3.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V3.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2013 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2013 - Australian Hourly Solar Exposure Gridded Data now ranges from 1990 to 2012 ASEIS V3.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region against the distance to the closest transmission powerline.

  • In July 2010, Geoscience Australia and CSIRO Marine & Atmospheric Research jointly commissioned a new atmospheric composition monitoring station, named Arcturus, in sub-tropical Queensland, Australia. The facility is designed as a proto-type remotely operated `baseline monitoring station' that could be deployed in areas that are likely targets for commercial scale geological storage of carbon dioxide. A key question, given the ecosystem and anthropogenic sources of CO2 in the region, and the absence of a 'clean-wind' sector baseline, is how large would a CO2 leak have to be from a geological storage site before it can be detected above the background CO2 signal? To address this, CO2 leak simulation modelling was performed for 1-year period using the coupled prognostic meteorological and air pollution model TAPM at various locations, emission rates and distances (1-10 km) from the station.

  • There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of '13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and baseline signals were evaluated and statistically compared to test for the presence of fugitive methane emissions. In addition, a time series model of the methane baseline was developed in order to generate alternative realizations of the baseline signal. These were used to provide measures of both the likelihood of detecting fugitive emissions at various emission levels and of the false alarm rate. Results of the statistical analysis and an indicative minimum fugitive methane emission rate that can be detected using a single monitoring station are presented. Poster presented at the American Geophysical Union meeting, December 2013, San Francisco

  • The National Hazard Impact Risk Service for Tropical Cyclone Event Impact provides information on the potential impact to residential separate houses due to severe winds. The information is derived from Bureau of Meteorology tropical cyclone forecast tracks, in combination with building location and attributes from the National Exposure Information System and vulnerability models to define the level of impact. Impact data is aggregated to Statistical Area Level 1, categorised into five qualitative levels of impact.

  • Modelling tropical cyclone Yasi using TCRM

  • We have developed an autonomous CO2 monitoring station, based around the Vaisala GMP343 sensor. The station is powered by a solar panel and incorporates a data logger and a directional antenna for line-of-sight wireless communication with a base station. The base station communicates via the Telstra mobile phone data network. The concept of atmospheric tomography was tested at the Ginninderra site and proved very successful as a method of locating and quantifying a spatially small release of CO2. In this case the sensors were separated from the source by 40 m. The opportunity to test the method over a larger distance arose during the controlled release of Buttress gas during the stage 2B experiment at the Otway site. Gas was released at 8 tpd during daylight hours, and an approximate ring of 8 monitoring stations was deployed around the release point; the ring was about 800 m in diameter. Gas was released on 12 occasions, chosen to match wind directions that would carry the plume in the direction of one of the sensors. The dataset was too limited to carry out the full-scale Bayesian inversion that was demonstrated in the Ginninderra test (which lasted two months) but a simple inversion was possible. This located the source of the release correctly to within 20 m. The test demonstrated that inexpensive sensors could achieve enough stability and sensitivity to work (in this particular application) at the few ppm level. Moreover quite simple dispersion models could be used to predict plume geometry up to 500 m from the release. Overall the experiment indicates the basis of an inexpensive method for remotely monitoring areas of around a km2 for spatially small leakages.

  • Fugitive methane emissions, in particular relating to coal seam gas (CSG),has become an emerging issue in Australia over the last few years. There has been significant controversy in US regarding the magnitude of fugitive emissions during production from unconventional gas wells, with large differences in emissions reported between studies using different measurement approaches. . Preliminary research into a small number of Australia's unconventional fields suggest the average fugitive emissions per well are lower than that found in the US. The primary challenge is that the techniques for quantifying methane leakages are still at an early stage of development. Current methods for the small to medium scale use chamber based approaches or vehicles installed with fixed sampling lines and high precisions gas analysers. These technologies are promising, but generally have not been ground truthed in field conditions against known emission rates to estimate effectiveness. They also have limited application in environments where vehicle access is not possible. The Ginniderra facility is being upgraded to support a methane controlled release experiment in 2015. This will enable testing of and verifying methods and technologies for measuring and quantifying methane emissions. To address the absence of suitable techniques for emmission measurement at medium scales, several BOREAL lasers will be deployed which work at scales of 20-1000 m. It is also envisaged airborne techniques utilising laser and hyperspectral will be deployed, along with tomography work utilising multiple concurrent concentration measurements.

  • Fugitive methane emissions, in particular relating to coal seam gas (CSG),has become an emerging issue in Australia over the last few years. There has been significant controversy in US regarding the magnitude of fugitive emissions during production from unconventional gas wells, with large differences in emissions reported between studies using different measurement approaches. . Preliminary research into a small number of Australia's unconventional fields suggest the average fugitive emissions per well are lower than that found in the US. The primary challenge is that the techniques for quantifying methane leakages are still at an early stage of development. Current methods for the small to medium scale use chamber based approaches or vehicles installed with fixed sampling lines and high precisions gas analysers. These technologies are promising, but generally have not been ground truthed in field conditions against known emission rates to estimate effectiveness. They also have limited application in environments where vehicle access is not possible. The Ginniderra facility is being upgraded to support a methane controlled release experiment in 2015. This will enable testing of and verifying methods and technologies for measuring and quantifying methane emissions. To address the absence of suitable techniques for emmission measurement at medium scales, several BOREAL lasers will be deployed which work at scales of 20-1000 m. It is also envisaged airborne techniques utilising laser and hyperspectral will be deployed, along with tomography work utilising multiple concurrent concentration measurements.