From 1 - 10 / 2335
  • The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.

  • No abstract available

  • Surface faults digitised from existing surface geology maps including scanned 1:250 000 scale Geological map series (Geoscience Australia, 2010), state geological survey 1:250 000 scale geological maps (NSW, Qld) and other publications Data is available in Shapefile format This GIS data set was produced for the Great Artesian Basin Water Resource Assessment

  • No abstract available

  • 1st edition Available as a product from NT Geological Survey or as a resource from GA Library

  • Nuclear Magnetic Resonance (NMR) tools have been used for decades by the oil industry to study lithological properties in consolidated sedimentary materials. Recently, slimline NMR borehole logging systems have been developed specifically for the study of near-surface (<100m) groundwater systems. In this study of unconsolidated fluvial sediments in the Darling River floodplain, data were acquired downhole every 0.5 m using a Javelin NMR tool. A total of 26 sonic cored bores were logged to a depth of ~70 m. Hydraulic conductivity (KNMR) can be estimated from the NMR measurements using the Schlumberger-Doll Research Equation: KNMR = C x -2 x T2ML2, where is the NMR porosity, T2ML is the logarithmic mean of the T2 distributions, and C is a formation factor related to tortuosity. To this end, the NMR data were classified into five hydraulic classes ranging from clay to gravely-coarse sand using the core, geophysical, mineralogical, and hyperspectral logs. Borehole slug tests were conducted to provide constraints on the K and T of the aquifers. Least-squares inversion was used to solve for the optimum C values versus the slug test derived T for the aquifer material (medium to gravely sand). Laboratory permeameter measurements helped constrain the C values of fine textured sediment. Comparisons between the geophysics derived KNMR and slug test KSlug indicated correspondence within two orders of magnitude. Investigations were also carried out to compare measurements of water content between laboratory determinations (oven drying of wet sediment at 105 oC) and that derived from NMR bore log data. A systematic decrease in ratio between the NMR total water and gravimetric water with fining of texture is observed. This is in part due to the inter-echo spacing of the NMR instrument (2.5 ms), which may be too large to detect hydroscopic moisture. Differences observed between NMR free water and gravimetric water within the sands requires further investigation, including the potential influence of iron phase coating of grains on fast relaxation responses. Overall, the borehole NMR method provides logging of near-continuous variations in K through a saturated sedimentary sequence, providing useful K estimates at increments not achievable using traditional aquifer testing, as well as K estimates for aquitard material.