From 1 - 10 / 38
  • The purpose of the Global Map is to accurately describe the present status of the global environment in international cooperation of respective National Mapping Organisations (NMOs) of the world. The Landcover, Vegetation Percentage Tree Cover and Elevation imagery have been developed by using satellite imagery with cooperation between participating NMOs and supporting stakeholders.

  • Modelled groundwater levels from 2010 to 2070 used to estimate the impact of climate change and future groundwater resource development on groundwater levels in the GAB. The modelling considered different scenarios of climate and groundwater development: Scenario A (historical climate and current development); Scenario C (future climate and current development) and Scenario D (future climate and future development). The future climate scenarios included the wet extreme (wet), the median (mid) and the dry extreme (dry). The raster grids "Ddry.grd", "Dmid.grd" and "Dwet.grd" show predicted hydraulic head for the year 2070 based on projections of future climate and future development. The grids "Ddry-Base.grd", "Dmid-Base.grd" and "Dwet-Base.grd" represent predicted differences between the hydraulic heads produced by Scenario D at 2070, and the modelled spatial distributions of hydraulic head for the year 2010 (Base scenario). The grid "Dmid-Cmid.grd" represents the difference between the 2070 spatial distributions of hydraulic head that were produced by Scenario D (mid) and Scenario C (mid) 'No data' value is 1e30 Cell size is 5000m x 5000m This data and metadata were produced by CSIRO for the Great Artesian Basin Water Resource Assessment. For more information, please refer to Welsh WD, Moore CR, Turnadge CJ, Smith AJ and Barr TM (2012) "Modelling of climate and groundwater development. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment ". CSIRO Water for a Healthy Country Flagship, Australia. Projection is Albers equal area conic, with central meridian 143 degrees longitude, standard parallels at -21 and -29 degrees latitude and latitude of projection's origin at -25.

  • Water table elevation of the Great Artesian Basin. Data is available as contours (Shapefile) and elevation grids (ESRI grid and ESRI ASCII grid) Height is in metres above sea level (AHD). Cell resolution is 1000m. Contours and elevations were produced for the Great Artesian Basin Water Resource Assessment and used in watertable maps in: 1. Chapter 6 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. 2. Regional watertable section of Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Carpentaria region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 10 in the associated summary report. 3. Regional watertable section of Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Central Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 13 in the associated summary report. 4. Regional watertable section of Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 14 in the associated summary report. 5. Regional watertable section of Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Western Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 12 in the associated summary report. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 75830. METHODS (continued from Lineage field): Contours were hand drawn from point water level data. Groundwater water levels along rivers with high EVI values were assumed to be 10m below ground. This information was used to interpret groundwater level contours where borehole water level data was absent. In areas of sparse data coverage the 3 second DEM was used to constrain contours below ground level. SA water levels were corrected for density effects due to salinity (in excess of 100,000 mg/L TDS in some bores in the Eyre Basin) but all others were uncorrected because salinity data were not available. Density corrections for the watertable are not deemed to be an issue outside of the SA portion of the GAB. Remote sensing studies of Enhanced Vegetation Index (EVI) were also used in the interpretation to provide water level information along certain rivers (refer to data set "Watercourses used to calculate riparian evapotranspiration loss from the GAB") where there were no boreholes. The hand drawn transparencies interpreted by Jim Kellet were scanned into a 2bit tiff file format. Scanned images were then rectified within ArcGIS and vectorised into linework using the ArcScan toolset to produce the polygon dataset Linework and were attributed with a contour value within the field "height", as well as a DESCRIPTION of the line TYPE in the field "descript". The grid surface was created using the Topo to Raster tool in the Spatial Analyst toolset from the values within the "height" field and clipped to the Revised Great Artesian Basin boundary and GEODATA TOPO 250K coastline. Note: data used to compile this map was a combination of the most recent available water level measurements (as at 2011), water level measurements at the time of drilling or the first water cut reported in drillers logs.

  • This dataset contains bathymetry (depth) products from the compilation of all available source bathymetry data within Northern Australia into a 30 m-resolution Digital Elevation Model (DEM). The Northern Australia region includes a broad continental shelf over 400 km wide extending out from Western Australia and the Northern Territory, and stretching over a distance of ~1500 km. This region encompasses numerous shallow coral reefs including the offshore Sahul Banks, sand cays, drowned ancient river valleys, broad inner-shelf banks and a rugged coastline. Bathymetry mapping of the seafloor is vital for the protection of Northern Australia, allowing for the safe navigation of shipping and improved environmental management. Shallow- and deep-water multibeam surveys have revealed the highly complex seafloor of the continental shelf and adjacent slope canyons draining into the Indian Ocean and Timor Sea. Airborne LiDAR bathymetry acquired by the Australian Hydrographic Office cover most of the Sahul Banks reefs, with some coverage gaps supplemented by satellite derived bathymetry. The Geoscience Australia-developed Intertidal Elevation Model DEM improves the source data gap along Northern Australia’s vast intertidal zone. All source bathymetry data were extensively edited as point clouds to remove noise, given a consistent WGS84 horizontal datum, and where possible, an approximate MSL vertical datum.

  • Layer 05 Base of Hooray Sandstone and equivalents surface Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Hooray Sandstone and Equivalents. The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76023.

  • Layer 08B Base of Poolowanna Formation Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Poolowanna Formation . The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76953.

  • Layer 10 Base of Jurassic-Cretaceous sequence surface Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Jurassic-Cretaceous sequence The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface. This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76028. REFERENCES (Continued from Lineage field) 10. Passmore, V. L., T. U. Maung, et al. (1992). Gulf of Carpentaria petroleum prospectivity study. Record 1992/20. Australia, Bureau of Mineral Resources, Geology and Geophysics 11. Hawke, J. M. and J. N. Cramsie (1984). Contributions to the geology of the Great Australian Basin in New South Wales. Bulletin 31. Sydney. 12. Hinds, M. (2011). NSW Great Artesian Basin internal data set released to Geoscience Australia in 2011 by NSW Office of Water. Australia, New South Wales Office of Water. 13. Ransley and Smerdon (eds.) 2012. Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. CSIRO. Canberra. 14. Nelson GJ, Carey H, Radke BM and Ransley TR (2012). The three-dimensional visualisation of the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia.

  • The Digital Elevation Model (DEM) 25 Metre Grid of Australia derived from LiDAR model represents a National 25 metre (bare earth) DEM which has been derived from some 236 individual LiDAR surveys between 2001 and 2015 covering an area in excess of 245,000 square kilometres. These surveys cover Australia's populated coastal zone; floodplain surveys within the Murray Darling Basin, and individual surveys of major and minor population centres. All available 1 metre resolution LiDAR-derived DEMs have been compiled and resampled to 25 metre resolution datasets for each survey area, and then merged into a single dataset for each State. These State datasets have also been merged into a 1 second resolution national dataset.

  • <p>The Northern Territory Geological Survey (NTGS) designed the Mount Peake-Crawford survey to provide high resolution magnetic, radiometric and elevation data in the area. It is anticipated that the data from the survey would help attract explorers into ‘greenfield’ terranes and contribute to the discovery of the next generation of major mineral and energy deposits in the Northern Territory. A total of 120,000 line km of regional data (200m line spacing) and additional infill data (100m line spacing), flown at 60m flight height were acquired during the survey between July and October 2019. The survey was managed by Geoscience Australia. <p>Various grids were produced from the Mount Peake-Crawford Airborne Magnetic and Radiometric Survey dataset and simultaneously merged into a single grid file. The final grid retains all of the information from the input data and is levelled to the national map compilations produced by Geoscience Australia. The merged grids have a cell size of 20m. <p>The following merged grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• NASVD-filtered potassium concentration grid (%). <p>• NASVD-filtered thorium concentration grid (ppm). <p>• NASVD-filtered uranium concentration grid (ppm).

  • This data release contains accurate positional data for groundwater boreholes in terms of horizontal location as well as elevation of the top of casing protectors. Twenty-four boreholes located in the Nulla and McBride basalt provinces have had DGPS survey results compiled and are presented. Using 95% confidence intervals, the horizontal uncertainties are less than 1.2m and vertical uncertainties less than 0.9m. These results are a substantial improvement, particularly on the uncertainty of elevations, and as such allow water levels need to be compared between bores on a comparable datum, to enable a regional hydrogeological understanding. Quantifying the uncertainties in elevation data adds robustness to the analysis of water levels across the region rather than detracting from it.