From 1 - 10 / 14476
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • This grid is derived from gravity observations stored in the Australian National Gravity Database (ANGD) as at February 2016 as well as data from the 2013 New South Wales Riverina gravity survey. Out of the approximately 1.8 million gravity observations 1,371,998 gravity stations in the ANGD together with 19,558 stations from the Riverina survey were used to generate this image. The grid shows isostatic residual gravity anomalies over onshore continental Australia. The data used in this grid has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. The isostatic corrections were based on the assumption that topographic loads are compensated at depth by crustal roots following the Airy-Heiskanen isostatic principle. A crustal density of 2670 kg/m3 was used for the isostatic correction, with an assumed density contrast between the crust and mantle of 400 kg/m3. An initial average depth to Moho at sea level of 37 km was used in the calculation. The isostatic corrections were then applied to the Complete Bouguer Gravity Anomaly Grid of Onshore Australia 2016 to produce the Isostatic Residual Gravity Anomaly Grid of Onshore Australia 2016.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight-year, $225m investment by the Australian Government. The Darling-Curnamona-Delamerian (DCD) 2D reflection seismic survey was acquired during May to August 2022 in the Delamerian Orogen, the Murray-Darling basin, the Curnamona Province, and the upper Darling River floodplain regions in South Australia, Victoria and New South Wales. This project is a collaboration between Geoscience Australia (GA), the Geological Survey of South Australia (GSSA), the Geological Survey of Victoria (GSV) and the Geological Survey of New South Wales (GSNSW) and was funded by the Australian Government’s Exploring for the Future (EFTF) program. The overall objective of the EFTF Darling-Curnamona-Delamerian project is to improve the understanding of mineral and groundwater resources of the Curnamona Province and Delamerian Orogen and overlying basin systems through acquisition and interpretation of new pre-competitive geoscience data sets. The total length of acquisition was 1256 km distributed over five deep crustal 2D reflection seismic lines 22GA-DL1 (446 km), 22GA-DL2 (249 km), 22GA-CD1 (287 km), 22GA-CD2 (178 km), 22GA-CD3 (39.5 km) to image deep crustal structures, and a high-resolution 2D reflection seismic line 22GA-UDF (56 km) to explore groundwater resources. The DL lines provide coverage of fundamental geophysical data over the Flinders Range, the Delamerian Province and the Murray-Darling basin region in eastern South Australia and Victoria. The CD lines extend through the Curnamona Province and into the Darling Basin. The UDF line will assist with refining the hydrogeological model, understanding groundwater dynamics, and locating areas better suited to groundwater bores for better quality groundwater in the upper Darling River floodplain area. The data processing was performed by a contractor under the supervision of Geoscience Australia. The five deep crustal lines (22GA-DL1,DL2,CD1,CD2,CD3) were processed with record lengths of 20 and 8 seconds, while the shallow high-resolution line (22GA-UDF) was processed at a 4 second length. This processing yielded DMO Stack, Post-Stack Time Migration, and Pre-Stack Time Migration products. <strong>Raw shot gathers and processed gathers for this survey are available on request from clientservices@ga.gov.au - Quote eCat# 147423</strong>

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • The coverage of this dataset is over the Taree region . The C3 LAS data set contains point data in LAS 1.2 format sourced from a LiDAR ( Light Detection and Ranging ) from an ALS50 ( Airborne Laser Scanner ) sensor . The processed data has been manually edited to achieve LPI classification level 3 whereby the ground class contains minimal non-ground points such as vegetation , water , bridges , temporary features , jetties etc . Purpose: To provide fit-for-purpose elevation data for use in applications related to coastal vulnerability assessment, natural resource management ( especially water and forests) , transportation and urban planning . Additional lineage information: This data has an accuracy of 0.3m ( 95 confidence ) horizontal with a minimum point density of one laser pulse per square metre. For more information on the data's accuracy, refer to the lineage provided in the data history .

  • A dataset for display as a layer in the Australian Mines Atlas. It is compiled from many shapefiles of Aboriginal Land, including: Indigenous Protected areas (from DEWHA), Registered Indigenous Land Use Agreements, (hosted by GA on behalf of the National Native Title Tribunal) Determinations of Native Title, (hosted by GA on behalf of the National Native Title Tribunal) Registered Native Title Claims, (hosted by GA on behalf of the National Native Title Tribunal) Indigenous land, freehold and leasehold (prepared by Peter Richardson at GA in 2009)

  • This dataset is part of a digital geological map of the Granites-Tanami Block which Australian Geological Survey Organisation has prepared by joining together as a seamless coverage 15 of the 1:250 000 geological maps which cover the province.The data layers in the digital map include geology, faults, lineaments structural data, mineral deposits and Australian Geological Survey Organisation drill hole locations. The digital data is available in Arcinfo/ Arcview or Mapinfo format. Topographic and cultural layers are not included: these can be purchased separately from AUSLIG.

  • No abstract available

  • This dataset is part of a digital geological map of the Granites-Tanami Block which Australian Geological Survey Organisation has prepared by joining together as a seamless coverage 15 of the 1:250 000 geological maps which cover the province.The data layers in the digital map include geology, faults, lineaments structural data, mineral deposits and Australian Geological Survey Organisation drill hole locations. The digital data is available in Arcinfo/ Arcview or Mapinfo format. Topographic and cultural layers are not included: these can be purchased separately from AUSLIG.