From 1 - 10 / 14488
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • This grid is derived from gravity observations stored in the Australian National Gravity Database (ANGD) as at February 2016 as well as data from the 2013 New South Wales Riverina gravity survey. Out of the approximately 1.8 million gravity observations 1,371,998 gravity stations in the ANGD together with 19,558 stations from the Riverina survey were used to generate this image. The grid shows isostatic residual gravity anomalies over onshore continental Australia. The data used in this grid has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. The isostatic corrections were based on the assumption that topographic loads are compensated at depth by crustal roots following the Airy-Heiskanen isostatic principle. A crustal density of 2670 kg/m3 was used for the isostatic correction, with an assumed density contrast between the crust and mantle of 400 kg/m3. An initial average depth to Moho at sea level of 37 km was used in the calculation. The isostatic corrections were then applied to the Complete Bouguer Gravity Anomaly Grid of Onshore Australia 2016 to produce the Isostatic Residual Gravity Anomaly Grid of Onshore Australia 2016.

  • The coverage of this dataset is over the Taree region . The C3 LAS data set contains point data in LAS 1.2 format sourced from a LiDAR ( Light Detection and Ranging ) from an ALS50 ( Airborne Laser Scanner ) sensor . The processed data has been manually edited to achieve LPI classification level 3 whereby the ground class contains minimal non-ground points such as vegetation , water , bridges , temporary features , jetties etc . Purpose: To provide fit-for-purpose elevation data for use in applications related to coastal vulnerability assessment, natural resource management ( especially water and forests) , transportation and urban planning . Additional lineage information: This data has an accuracy of 0.3m ( 95 confidence ) horizontal with a minimum point density of one laser pulse per square metre. For more information on the data's accuracy, refer to the lineage provided in the data history .

  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.

  • AUSGeoid98 data files contain a 2 minute grid of AUSGeoid98 data covering the Australian region, which you can use to interpolate geoid-ellipsoid separations for the positions required.You can use your own interpolation software, or you can use Geoscience Australia's Windows Interpolation software (Winter). The data files are text files in a standard format that cover the same area as standard topographic map areas. Files covering both 1:250,000 (approximately 100 x 150 km) and 1:1,000,000 (approximately 400 x 600 km) map areas are available. There is a 4 minute overlap on all sides of each area. Data format: AUSGeoid98 data files have a header record at the start of each file, to distinguish them from the superseded AUSGeoid93 data files. AUSGeoid98 data files show the geoid-ellipsoid separation to 3 decimal places, while the superseded AUSGeoid93 data files showed only 2 decimal places. AUSGeoid98 deflections of the vertical were computed from the geoid-ellipsoid separation surface, while the AUSGeoid93 deflections of the vertical were computed from OSU91A.