From 1 - 10 / 14540
  • <div>The Vlaming Sub-Basin CO2 Storage Potential Study data package includes the datasets associated with the study in the Vlaming Sub-basin, located within the southern Perth Basin about 30 km west of Perth. The data in this data package supports the results of the Geoscience Australia Record 2015/009 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Vlaming Sub-basin and was part of the Australian Government's National Low Emission Coal Initiative.</div>

  • <div>The Abbot Point to Hydrographers Passage bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the RV Escape during the period 6 Oct 2020 – 16 Mar 2021. This was a contracted survey conducted for the Australian Hydrographic Office by iXblue Pty Ltd as part of the Hydroscheme Industry Partnership Program. The survey area encompases a section of Two-Way Route from Abbot Point through Hydrographers Passage QLD. Bathymetry data was acquired using a Kongsberg EM 2040, and processed using QPS QINSy. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>

  • This dataset was produced by a NESP project, and contains 5 m resolution bathymetry tiles with national Australian coverage of both coastal and outer marine regions. The data product contains 'bathymetry' and 'shelf bathymetry', with the shelf bathymetry constrained to the 0-200m depth region. Files are in RGB geotiff and ASC grid format, zipped as *.gz. Tiles are 0.5x0.5 degrees.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • Moreton Bay 2009 LiDAR data was captured over the Moreton Bay Regional Council area between March and June 2009. The data was acquired by AAM Hatch (now AAMGroup) and funded by Queensland and Commonwealth governments. The project area covering 2440sqkm is licenced for use by all Commonwealth, State and Local Government organisations. Data acquisition and post-processing has been controlled to achieve a vertical accuracy witihn 0.15m (RMS, 68% CI) and horizontal accuracy within 0.45 m. Horizontal coordinates are based upon Map Grid of Australia (MGA) Zone 56 projection. Vertical coordinates are referenced to Australian Height Datum (AHD). The data was captured with point density of 2.5 points per square metre and the data is available as mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing in 1km tiles.

  • AAM Hatch was engaged by Geoscience Australia to undertake a LiDAR survey over the BHMAR Phase 2 prject area, for the purpose of producing a DTM and vegetation structure analysis. The survey covers an area of approximately 7856 sqkm of the Lower Darling River, downstream from Wilcannia. LiDAR was acquired from a fixed wing aircraft between 19 June 2009 and 5 August 2009 with a vertical accuracy of 0.15m and horizontal accuracy of 0.25m in coordinated system GDA 94, MGA Zone 54 and vertical datum of AHD. File formats included las format and 1m DTM ESRI Grids in ArcGIS binary grid format. Producing a DTM and vegetation structure analysis for the BHMAR Phase 2 Project area for groundwater monitoring.

  • ASEG 2012 digital data for conference delegates stored on 8GB USB stick. Two directories - GIS_data & PDF_maps. The GIS_data diectory contains AEM data from the three OESP AEM surveys; 5th edition magnetic grid, 2nd edition radiometric grids and bandpass filtered and isostatic gravity grids at a national scale; locations of onshore seismic lines (Geocat 32407). A sub-directory containing survey metadata on open-file airborne geophysical surveys in MapInfo/Shape formats. A sub-directory containing mineral occurrence data in MapInfo/Shape formats. A sub-directory containing surface geology datasets a 1:1M and 1:2.5M scales. A sub-directory containing the Global Map 1:1M scale (Geocat 48006) dataset of administrative boundaries, drainage, transportation and population centres. The PDF_Maps directory contains A0 & A3 scale maps of the national magnetic, radiometric and gravity datasets. Maps of mines and mineral occurrences at a national scale and index maps of the airborne geophysical and gravity surveys coverage of the continent.

  • A three-dimensional (3D) map of the Cooper Basin region has been produced from 3D inversions of Bouguer gravity data using geological data to constrain the inversions. The 3D map has been used to predict temperatures and their uncertainty throughout the volume of the map. This will allow regions of elevated predicted temperature at 4-5 km to be identified, which may provide targets for future geothermal exploration in the Cooper Basin region. The 3D map delineates regions of low density within the basement of the Cooper and Eromanga basins that are inferred to be granitic bodies, which may act as heat sources. It also delineates the stratigraphy of the sedimentary basins which act as thermal insulation. This release is the second version of the 3D map of the Cooper Basin region. It builds on Version 1 of the Cooper Basin Region Geological map, released in 2009.

  • No abstract available