product
Type of resources
Keywords
Publication year
Topics
-
Audio-visual materials created from OpenQuake training delivered by the Global Earthquake Model held at Geoscience Australia in September 2014.
-
The 2018 revision of Australia's National Seismic Hazard Assessment (NSHA18) represents a substantial improvement from the 2013 NSHA. In particular, this revision will include a fault source models, an improved and more homogeneous earthquake catalogue, and greater epistemic uncertainty through a call for third party source models. This paper presents updated models of seismicity and ground motion that are currently being developed at Geoscience Australia for the NSHA. We use the OpenQuake software to calculate seismic hazard for Australia and compare with OpenQuake implementations of third-party models and the 2013 NSHA. Weighting of logic tree branches for alternative models are discussed, and how these relate to the fundamental datasets on which they are based. A smoothed seismicity model is developed based on recent seismicity while source models derived from neotectonic fault data consider a much longer time history. Final weightings, including for third party models, will be determined in consultation with members of the Australian seismological community.
-
Flythrough of Murray Canyons based on AUSCAN research cruise Jan-March 2003
-
Factsheet for DEA with information relevant to stakeholders from the Australian Government
-
Probabilistic methods applied to infrequent but devastating natural events are intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, asteroid impacts) with varying mean return times. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of assessing and mitigating tsunami risk and improving the early warning systems. The PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific characteristics of the tsunami intensities (e.g. run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including: (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms; (ii) developments in modelling the propagation and impact of tsunami waves; (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence and uncertainties in an integrated and consistent probabilistic framework.
-
<p>Bathymetry flythrough of Perth Canyon using data acquired by Schmidt Ocean Institute in 2015 on RV Falkor (University of Western Australia et al.). The flythrough highlights geomorphic features mapped by Geoscience Australia, including landslides, escarpments and bedform fields and biodiversity associated with the canyon (benthic and pelagic). Produced as a science communication product for the Marine Biodiversity Hub (National Environmental Science Program). <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
Following a Government decision in 1984, Geoscience Australia actively engages in nuclear monitoring activities on behalf of the Australian Government through the Department of Foreign Affairs and Trade's Australian Safeguards and Non-proliferation Office. Geoscience Australia helps Australia fulfil its obligations under the CTBT by monitoring for nuclear explosions worldwide and by contributing to the development of the CTBT verification regime. Geoscience Australia is currently responsible for the operation and maintenance of 10 of Australia's seismo-acoustic IMS facilities (six seismic stations, three infrasound stations and one hydroacoustic station). Additionally, Geoscience Australia is in the process of building the final infrasound station to complete Australia's seismo-acoustic IMS network. Construction of this station is expected to be completed within the next two years. Geoscience Australia actively participates in international fora dedicated to technological advances supporting nuclear non-proliferation and verification, and to the use of IMS data for civil and scientific applications. The latter include tsunami-warning and the monitoring of earthquakes and volcanic eruptions.
-
Version 2: the design of the mouse pad has been updated, increasing its overall size and changing the background colour/graphics. Version 1: This mouse pad was created by the Mineral Exploration Promotion section as an informative give-away for domestic and international conferences. The mouse pad displays an abbreviated periodic table of the elements with those elements that Australia produces, has known resources of and explores for highlighted in different colours. Version 1a: The mouse pad design was updated in February 2019 by the Resources Assessment, Advice and Minerals Promotion section to highlight critical commodities (and update the production status of some elements).
-
Bookmark developed during the year of the 30th anniversary of the Newcastle earthquake and used to raise awareness of earthquakes and to provide information on what to do in an earthquake. As Geoscience Australia jointly operates the Joint Australian Tsunami Warning Centre with the Bureau of Meteorology, the bookmark also provides information on tsunami safety. Geoscience Australia identifies and characterises potentially tsunamigenic earthquakes and this information is used to initiate the tsunami warning chain.
-
This flythrough shows the seafloor bathymetry, cores and canyon names for the Sabrina slope region of East Antarctica. Indigenous names for canyons were proposed following consultation with the Noongar people in Western Australia, the region of Western Australia that was formerly conjugate to the Sabrina margin. Canyon names are as follows: 1. Boongorang Canyon (Blowing in the wind) 2. Manang Canyon (Pool of Water Canyon) 3. Maadjit Canyon (Water Serpent Canyon) 4. Jeffrey Canyon (after Shirley Jeffrey, diatom researcher) 5. Morka Canyon (Winter Canyon) 6. Minang-a Canyon (Whale Canyon)