From 1 - 10 / 377
  • This service provides Australian surface hydrology, including natural and man-made features such as water courses (including directional flow paths), lakes, dams and other water bodies. The information was derived from the Surface Hydrology database, with a nominal scale of 1:250,000. The National Basins and Catchments are a national topographic representation of drainage areas across the landscape. Each basin is made up of a number of catchments depending on the features of the landscape. This service shows the relationship between catchments and basins. The service contains layer scale dependencies.

  • In 2017, 22 new offshore petroleum exploration areas have been released. The majority of the areas are located along the North West Shelf spanning the Westralian Superbasin from the Bonaparte Basin in the east to the Northern Carnarvon Basin in the west. New areas are being released in offshore southeastern Australia with new opportunities provided in the Otway, Bass and Gippsland Basins. Two large areas in the North Perth Basin, an offshore frontier, complete the 2017 Acreage Release. All Release Areas are supported by industry nominations and one new cash bid area has been offered in the Dampier Sub-basin. Geoscience Australia continues to support industry activities by acquiring, interpreting and integrating pre-competitive datasets that are made freely available as part of the agency’s regional petroleum geological studies. A new regional 2D seismic survey was acquired in the North Perth Basin and the results of data interpretation and integration are part of the latest prospectivity study carried out by Geoscience Australia and is presented in the technical program of the 2017 APPEA conference. A wealth of seismic and well data, submitted under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGSSA) 2006 are made available through the National Offshore Petroleum Information Management System (NOPIMS). Additional data sets remain accessible through Geoscience Australia’s data repository.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • Zip file containing all ModelVision files (created with ModelVision version 14.00.05) used in the GA Record: 'An integrative approach to investigating crustal architecture and cover thickness in the Southern Thomson region: Modelling new geophysical data'. All ModelVision files have the extension .ses and are named as per their location in the GA record described above. The zip file also contains an information (readme) file.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • The term "Smartline" refers to a GIS line map format which can allow rapid capture of diverse coastal data into a single consistently classified map, which in turn can be readily analysed for many purposes. This format has been used to create a detailed nationally-consistent coastal geomorphic map of Australia, which is currently being used for the National Coastal Vulnerability Assessment (NCVA) as part of the underpinning information for understanding the vulnerability to sea level rise and other climate change influenced hazards such as storm surge. The utility of the Smartline format results from application of a number of key principles. A hierarchical form- and fabric-based (rather than morpho-dynamic) geomorphic classification is used to classify coastal landforms in shore-parallel tidal zones relating to but not necessarily co-incident with the GIS line itself. Together with the use of broad but geomorphically-meaningful classes, this allows Smartline to readily import coastal data from a diversity of differently-classified prior sources into one consistent map. The resulting map can be as spatially detailed as the available data sources allow, and can be used in at least two key ways: Firstly, Smartline can work as a source of consistently classified information which has been distilled out of a diversity of data sources and presented in a simple format from which required information can be rapidly extracted using queries. Given the practical difficulty many coastal planners and managers face in accessing and using the vast amount of primary coastal data now available in Australia, Smartline can provide the means to assimilate and synthesise all this data into more usable forms.

  • The Workflow Manager JavaScript Application is designed to work with Esri Workflow Manager. This is a Javascript web application that connects to a Workflow Manager web service and allows users to access the workflows without needing the Esri Workflow Manager desktop application. There is a read me file associated with the application in the GitHub repository.

  • Codes for the statistical analysis of storm wave clustering.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • From June 23rd to November 4th 2016 Geotech Ltd. carried out a helicopter-borne geophysical survey over part of East Isa in Queensland (figure 1). Operations were based at Cloncurry, Queensland. The traverse lines were flown in an east to west (N 90° E azimuth) direction with 2km and 2.5km traverse line spacings, with three Tie lines flown perpendicular to the traverse lines. During the survey the helicopter was maintained at a mean altitude of 76 metres above the ground with an average survey speed of 90 km/hour. This allowed for an actual average EM Transmitter-receiver loop terrain clearance of 38 metres and a magnetic sensor clearance of 68 metres. The principal geophysical sensors included a versatile time domain electromagnetic (VTEMTMPlus) full receiver-waveform system, and a caesium magnetometer. Ancillary equipment included a GPS navigation system, laser and radar altimeters, and inclinometer. A total of 15697 line-kilometres of geophysical data were acquired during the survey. The electromagnetic system is a Geotech Time Domain EM (VTEMplus) with full receiver-waveform streamed data recording at 192 kHz. The "full waveform VTEM system" uses the streamed half-cycle recording of transmitter current and receiver voltage waveforms to obtain a complete system response calibration throughout the entire survey flight. The VTEM transmitter loop and Z-component receiver coils are in a concentric-coplanar configuration and their axes are nominally vertical. An X-component receiver coil is also installed in the centre of the transmitter loop, with its axis nominally horizontal and in the flight line direction. The receiver coils measure the dB/dt response, and a B-Field response is calculated during the data processing. In-field data quality assurance and preliminary processing were carried out on a daily basis during the acquisition phase. Preliminary and final data processing, including generation of final digital data products were undertaken from the office of Geotech Ltd. in Aurora, Ontario. A set of Conductivity Depth Images (CDI) were generated using EM Flow version 3.3, developed by Encom Technologies Pty Ltd. A total of forty-five (45) dB/dt Z component channels, starting from channel 4 (21 µsec) to channel 48 (10667 µsec), were used for the CDI calculation. An averaged waveform at the receiver was used for the calculation since it was consistent for the majority of the flights with minor deviation from the average. Digital data includes all electromagnetic and magnetic data, conductivity imaging products, mulitplots plus ancillary data including the waveform.