2022
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Digital Elevation Model represents ground surface topography between points of known elevation. The elevation data was calculated using the altimeters and Global Positioning System (GPS) sensor used for the benefit of airborne magnetic and radiometric data on the same survey. The elevation is the height relative to the Australian Height Datum GDA94 (AUSGEOID09). The processed elevation data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Cobar Magnetic and Radiometric Survey, 2021 survey were acquired in 2021 by the NSW Government, and consisted of line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
As part of the Onshore Energy Systems Group’s program, late gas (methane) and compositional kinetics (1-, 2-, 4- and 14-component (phase) kinetics) were undertaken by GeoS4, Germany. The phase kinetics approach is outlined in Appendix 1. This report provides the data required to access the shale gas potential of source rocks from the Georgina Basin, Australia.
-
Geoscience Australia’s biostratigraphic database (STRADAT) provides information about the biozonation of sedimentary rocks that were intersected by offshore petroleum wells. The basic unit of biostratigraphy is the biozone, a geological unit formally defined on the basis of the fossil groups contained within. Widely used taxa include trilobites, brachiopods, conodonts, dinoflagellate cysts, foraminifera, graptolites, spores and pollen, as well as nanofossils. Such units are typically defined by either the first appearance (range base) and apparent extinctions (range top/last appearance), or abundance of fossil index species. These fossil indices should ideally be relatively abundant, short-lived taxa that are easy to recognise and as geographically widespread as possible. Zonal schemes based on several different fossil groups can be used in parallel, and the zones can be calibrated to the absolute geological timescale (i.e., Geologic Time Scale 2004, 2012, 2020). Biozones allow the identification of spacial—temporal relationships and the distribution of lithostratigraphic units within and across sedimentary basins. They facilitate the understanding of subsurface geology and identification of source, reservoir and seal rocks, key elements of petroleum systems. These biostratigraphic data originate from well completion reports and destructive analyses reports that are submitted by the petroleum industry under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGGSA) 2006 and previous Petroleum (submerged Lands) Act (PSLA) 1967. These data are also sourced from biostratigraphic studies by Geoscience Australia and its predecessor organisations, the Australian Geological Survey Organisation (AGSO) and the Bureau of Mineral Resources (BMR), as well as from state and territory geological organisations. Other open file data from publications, including university theses, are also captured. The database structure has evolved over time and will keep changing as different types of geological timescales data become available and the delivery platform changes. Data was initially delivered through the Petroleum Wells web page, http://dbforms.ga.gov.au/www/npm.well.search, which is in the process of being decommissioned. The biostratigraphic data will be available for viewing and download via the Geoscience Australia Portal Core, https://portal.ga.gov.au/.
-
This animation shows how stratigraphic drilling is conducted. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by GA's data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what stratigraphic drilling looks like, what measurements and samples are taken, and how scientists use the data.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Cobar P5009 EXT 4 total magnetic intensity grid has a cell size of 0.00039074 degrees (approximately 40m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.00039074 degrees (approximately 40m).The data are in nanoTesla (or nT). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00039074 degrees (approximately 40m) and shows thorium element concentration of the Cobar Magnetic and Radiometric Survey, 2021 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00039074 degrees (approximately 40m) and shows uranium element concentration of the Cobar Magnetic and Radiometric Survey, 2021 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00039074 degrees (approximately 40m) and shows thorium element concentration of the Cobar Magnetic and Radiometric Survey, 2021 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This Cobar P5009 EXT 6 dose rate grid has a cell size of 0.00039074 degrees (approximately 40m) and shows the terrestrial dose rate of the Cobar Magnetic and Radiometric Survey, 2021. The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.