From 1 - 10 / 2216
  • The Murray Canyons are a group of deeply-incised submarine canyons on a steep 400-km section of the continental slope off Kangaroo Island, South Australia. Some of the canyons are amongst the largest on Earth. The canyons, some 80 km long, descend from the shelf edge to abyssal plain 5200 m deep. Sprigg Canyon, the deepest and one of the largest, has walls 2 km high. The thalwegs of the larger canyons are concave in profile, steepest on the upper continental slope (15?-30?), with about 4?gradient on the mid slope, then level out on the lower slope to merge with the 1? continental rise. Between canyons, the continental slope is slightly convex to linear with a gradient of about 5?-6?. Canyon walls commonly slope at 15?-22?. The passive continental margin narrows to 65-km at the Murray Canyons and links the Bight and Otway Basins. WNW-trending Jurassic-Cretaceous rift structures control the irregular shape of the central canyons. At the western end, large box canyons 1 km deep are incised into thick sediments of the Ceduna Sub-basin. Formed by headscarp erosion, some of these canyons have coalesced by canyon capture. The upper parts of most canyons are cut into Cretaceous sediments and in some places are floored by basement rocks. Large holes, spaced about 5 km apart and up to several hundred metres deep, along the outlet channels of the larger and steeper canyons were probably gouged by turbidity currents resulting from major slope failures at the shelf edge. Quaternary turbidites were deposited on the abyssal plain more than 100 km from the foot of slope. Canyon down-cutting was episodic since the latest Cretaceous, with peak activity since the Oligocene due to strong glacioeustatic fluctations and cycles, with canyon development occurring during lowstands and early transgressions when sediment input at the shelf edge was usually highest. The timing of canyon development is linked to major unconformities within adjacent basins, with down-cutting events recorded or inferred during early Paleocene, Middle Eocene, Early Oligocene, Oligocene/Miocene transition (~24 Ma), mid Miocene (~14 Ma) and latest Miocene-Pleistocene. The early phases involved only siliciclastic sediments, while post-early Eocene canyon cutting was dominated by biogenic carbonates generated on the shelf and upper continental slope. The Murray River dumped its sediment load directly into Sprigg Canyon during extreme lowstands of the Late Pleistocene when the Lacepede Shelf was dry land.

  • Final Report Targeting new mineral deposits in western Victoria Project T1

  • Australian Copper Deposits, Occurrences and Potential as of February 2005

  • Controls on mineral endowment of major faults and shear zones in the Yilgarn Craton, Westsern Australia. PhD thesis, Monash university.

  • The oxygen isotopic record obtained from Globigerina bulloides, Globorotalia inflata, and Neogloboquadrina pachyderma (s.) was analysed for 5 sediment traps moored in the Southern Ocean and Southwest Pacific. The traps extend from Subtropical to the Polar Frontal environments, providing the first analysis of seasonal foraminiferal d18O records from these latitudes. Comparison between the foraminiferal records and various equations for predicted d18O of calcite reveals that the predicted d18O is best captured by the equations of Epstein et al. (1953) [Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin 64, 1315-1326.] and Kim and O'Neil (1997) [Kim, S.-T., O'Neil, J.R., 1997. Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 3461-3475.]. The Epstein equation shows a constant offset from the -18O of G. bulloides and N. pachyderma (s.) across the full range of latitudes. The seasonal range in -18O values for these two species implies a near-surface habitat across all sites, while G. inflata most likely dwells at 50 m depth. A significant finding in this study was that offsets from predicted -18O for G. bulloides do not correlate to changes in the carbonate ion concentration. This suggests that [CO32-] in and of itself may not capture the full range of carbonate chemistry conditions in the marine system. This sediment trap deployment also reveals distinct seasonal flux patterns for each species. Comparison between flux-weighted isotopic values calculated from the sediment traps and the isotopic composition of nearby surface sediments indicates that the sedimentary records retain this seasonal imprint. At the 51°S site, G. bulloides has a spring flux peak while N. pachyderma (s.) is dominated by summer production.

  • Operations report for gravity survey 200560 prepared for GA by Daishsat Pty Ltd

  • Sharing the wealth  - Australia 's Mining Monthly, April 2005, by Jess Tyler (contributions by Bob Morrison, John Walshe, Carl Young, Tony Roache, Kas De Luca)

  • Kendrick et al - Goldschmidt 2005

  • Cleverley J.S., 2005. Volatile (CO2-H2O-Cl) transfer between the mantle and upper crust: Brecciation, magmatism and Fe-oxide copper-gold deposits.