2019
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Cavendish, Vic, 1989 (GSV0363) survey were acquired in 1989 by the VIC Government, and consisted of 4532 line-kilometres of data at 250m line spacing and 70m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Cavendish, Vic, 1989 (GSV0363) (P1521), radiometric line data, AWAGS levelled were acquired in 1989 by the VIC Government, and consisted of 4532 line-kilometres of data at 250m line spacing and 70m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This East Gippsland, Vic, 1998 (GSV3077) (P1557), radiometric line data, AWAGS levelled were acquired in 1998 by the VIC Government, and consisted of 16736 line-kilometres of data at a line spacing between 200m and 400m, and 75m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The HazImp system enables users to analyse the impact of natural hazards. HazImp is capable of assessing the impact of a range of hazards including, but not limited to, floods and tropical cyclones. HazImp uses a set of pre-processed inputs, perform logic based analysis using predefined models and produce a range of quantitative outputs. These inputs may be produced by existing external systems including hazard modelling applications. HazImp outputs may include aggregated values, statistical figures, diagrams and spatial maps to describe the impact of the natural hazard to the study area. HazImp assesses the impact of a natural hazard as a combination of three fundamental elements: • Hazard - the type of hazard and its properties; • Exposure - elements that are or could be subject to the hazard; • Vulnerability – an element’s physical or social susceptibility to the hazard. All three elements are required to properly assess the impact of a hazard and a change in any element will affect the impact results. HazImp supports a set of inputs, each corresponding to one of these three elements. HazImp is designed to support a wide variety of scenarios making it highly customisable to the event or events being analysed. In particular, HazImp is compatible with existing GA systems. HazImp supports two primary business cases for natural hazard impact assessment. The first, to support risk assessment and mitigation where system response times can be generous and could be as long as weeks. The second, is forecasting the impact of an imminent event, where an assessment is needed in real-time.
-
Geoscience Australia is the nation’s trusted advisor on the geology and geography of Australia. In its role as the provider of fundamental geographic information for the nation, Geoscience Australia is coordinating new efficient and consistent approaches to cross-government location information supply chains to meet requirements for more detailed and frequently updated national data. This presentation will explore these approaches with a focus on how and why land, property and transport network information can be enabled to ultimately improve outcomes to meet the triple bottom line in the national context - Australia’s environment, its people and economic prosperity. In this presentation, Geoscience Australia will outline how it is collaborating with a wide range of stakeholders in response to increasing demands and expectations for detailed, timely, consistent and interoperable location information throughout Australia. The presentation will describe how existing vehicles for change such as the Foundation Spatial Data Framework, Open Data principles and the Location Index are being used to identify current and future information needs and gaps, examine existing supply chains and identify opportunities to lubricate the flow and integration of vital information underpinning important decisions and policy development.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the West Kimberley (Prince Regent - Montague - Charnley), WA,2011 survey were acquired in 2011 by the WA Government, and consisted of 145084 line-kilometres of data at a line spacing between 200m and 200m, and 50m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This South West 1 (Moora), WA, 2011 (P1240), radiometric line data, AWAGS levelled were acquired in 2011 by the WA Government, and consisted of 137623 line-kilometres of data at 200m line spacing and 50m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Perth Basin South, WA, 2011 survey were acquired in 2011 by the WA Government, and consisted of 80718 line-kilometres of data at 400m line spacing and 60m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Buchanan Central, NT, 2002 (P1023), radiometric line data, AWAGS levelled were acquired in 2002 by the NT Government, and consisted of 175073 line-kilometres of data at 400m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.