From 1 - 10 / 728
  • This map is part of the series that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5 km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Each standard map covers an area of 1.5 degrees longitude by 1 degree latitude or about 150 kilometres from east to west and 110 kilometres from north to south. There are about 50 special maps in the series and these maps cover a non-standard area. Typically, where a map produced on standard sheet lines is largely ocean it is combined with its landward neighbour. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours (interval 50m), localities and some administrative boundaries. The topographic map and data index shows coverage of the sheets. Product Specifications Coverage: The series covers the whole of Australia with 513 maps. Currency: Ranges from 1995 to 2009. 95% of maps have a reliability date of 1994 or later. Coordinates: Geographical and either AMG or MGA (post-1993) Datum: AGD66, GDA94, AHD. Projection: Universal Traverse Mercator (UTM) Medium: Paper, flat and folded copies.

  • This map is part of the series that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5 km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Each standard map covers an area of 1.5 degrees longitude by 1 degree latitude or about 150 kilometres from east to west and 110 kilometres from north to south. There are about 50 special maps in the series and these maps cover a non-standard area. Typically, where a map produced on standard sheet lines is largely ocean it is combined with its landward neighbour. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours (interval 50m), localities and some administrative boundaries. The topographic map and data index shows coverage of the sheets. Product Specifications Coverage: The series covers the whole of Australia with 513 maps. Currency: Ranges from 1995 to 2009. 95% of maps have a reliability date of 1994 or later. Coordinates: Geographical and either AMG or MGA (post-1993) Datum: AGD66, GDA94, AHD. Projection: Universal Traverse Mercator (UTM) Medium: Paper, flat and folded copies.

  • This map is part of the series that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5 km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Each standard map covers an area of 1.5 degrees longitude by 1 degree latitude or about 150 kilometres from east to west and 110 kilometres from north to south. There are about 50 special maps in the series and these maps cover a non-standard area. Typically, where a map produced on standard sheet lines is largely ocean it is combined with its landward neighbour. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours (interval 50m), localities and some administrative boundaries. The topographic map and data index shows coverage of the sheets. Product Specifications Coverage: The series covers the whole of Australia with 513 maps. Currency: Ranges from 1995 to 2009. 95% of maps have a reliability date of 1994 or later. Coordinates: Geographical and either AMG or MGA (post-1993) Datum: AGD66, GDA94, AHD. Projection: Universal Traverse Mercator (UTM) Medium: Paper, flat and folded copies.

  • This map is part of the series that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5 km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Each standard map covers an area of 1.5 degrees longitude by 1 degree latitude or about 150 kilometres from east to west and 110 kilometres from north to south. There are about 50 special maps in the series and these maps cover a non-standard area. Typically, where a map produced on standard sheet lines is largely ocean it is combined with its landward neighbour. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours (interval 50m), localities and some administrative boundaries. The topographic map and data index shows coverage of the sheets. Product Specifications Coverage: The series covers the whole of Australia with 513 maps. Currency: Ranges from 1995 to 2009. 95% of maps have a reliability date of 1994 or later. Coordinates: Geographical and either AMG or MGA (post-1993) Datum: AGD66, GDA94, AHD. Projection: Universal Traverse Mercator (UTM) Medium: Paper, flat and folded copies.

  • Within the general trend of post-Eocene cooling, the largest and oldest outlet of the East Antarctic Ice Sheet underwent a change from ice-cliff to ice-stream and/or ice-shelf dynamics, with an associated switch from line-source to fan sedimentation. Available geological data reveal little about the causes of these changes in ice dynamics during the Miocene Epoch, or the subsequent effects on Pliocene-Pleistocene ice-sheet history. Ice-sheet numerical modeling reveals that bed morphology was probably responsible for driving changes in both ice-sheet extent and dynamics in the Lambert-Amery system at Prydz Bay. The modeling shows how the topography and bathymetry of the Lambert graben and Prydz Bay control ice-sheet extent and flow. The changes in bathymetric volume required for shelf-edge glaciation correlate well with the Prydz Channel fan sedimentation history. This suggests a negative feedback between erosion and glaciation, whereby the current graben is overdeepened to such an extent that shelf-edge glaciation is now not possible, even if a Last Glacial Maximum environment recurs. We conclude that the erosional history of the Lambert graben and Prydz Bay in combination with the uplift histories of the surrounding mountains are responsible for the evolution of this section of the East Antarctic Ice Sheet, once the necessary initial climatic conditions for glaciation were achieved at the start of the Oligocene Epoch.

  • Product no longer exists, please refer to GeoCat #30413 for the data

  • This second edition preliminary three dimensional model has been constructed from themes compiled from a variety of sources and assembled primarily within a GoCAD application. The display medium for web delivery has used the Virtual Reality Modelling Language (VRML) format. Layers of data were principally supplied by Geoscience Australia. Mineral occurrence information was provided by the Northern Territory and Western Australia Geological Surveys. Interpreted 1:250 000 scale maps of the Tanami and 1:500 000 Arunta North were provided by the Northern Territory Geological Survey. Cross-sections were geophysically modelled using ModelVision software and imported into GoCAD. Structural and geological modelling of cross-sections was provided by the NTGS. Surfaces were modelled in GoCAD using cross-section data and surface constraints. The current seismic proposal has been a collaborative effort involving Commonwealth, State and private companies.

  • Product no longer exists, please refer to GeoCat #30413 for the data

  • Product no longer exists, please refer to GeoCat #30413 for the data

  • This keynote address was presented at the Australian Nickel Conference held in Perth, 13-14 October 2004. Nickel-sulphide deposits in Australia are mainly associated with Archaean komatiites and Archaean Proterozoic mafic intrusions, but some unusual Phanerozoic deposits occur in eastern Australia. The majority of Australia's nickel production (~80%) is derived from komatiite deposits in the Yilgarn Craton of Western Australia. The Eastern Goldfields Province of this craton hosts one of the greatest concentrations of Archaean komatiite-hosted nickel deposits in the world, several of which are world class (>1 Mt Ni). Exploration activities in Australia are currently focussed on mafic-ultramafic rocks in Late Archaean and Proterozoic provinces. Exploration has been stimulated by the discovery of new deposits (Flying Fox, Daybreak, Armstrong, Daltons, McEwen, Nebo-Babel), recognition of different styles of mineralisation (Avebury), and the protracted period of elevated nickel metal prices. There is considerable potential for finding new deposits associated with komatiites and mafic intrusions, particularly under shallow cover. Geoscience Australia has undertaken new research initiatives that define favourable mineralising elements, exploration strategies, and new nickel metallogenic provinces.