From 1 - 10 / 854
  • This map show the boundaries of the Landside and Waterside Zones for the purposes of the Maritime Transport & Office Security Act 2003 1 sheet (Colour) April 2009 Not for sale or public distribution Contact Manager LOSAMBA project

  • This map shows the area of the Commonwealth Scalefish Hook Sector Gulper Shark Closure - Southern Dogfish. Modified from GeoCat 65110 (2007) as per the Southern and Eastern Scalefish and Shark Fishery (Closures) Direction No. 1 2009 - Schedule 16. Produced for the Australian Fisheries Management Authority. Not for public sale or distribution by GA.

  • This map shows the boundary of the security regulated port for the purpose of the Maritime Transport & Office Security Act 2003. 1 sheet (Colour) April 2009 Not for sale or public distribution Contact Manager LOSAMBA project

  • This map shows the boundaries of the security regulated port for the purposes of the Maratime Transport & Offshore Facilities Security Act 2003 4 sheets (colour) October 2009 Nort for sale or public distribution. Contact Manager LOSAMBA project, PMD.

  • This dataset contains the 2009 Offshore Petroleum Acreage Release Areas. The regular release off offshore acreage is a key part of the Australian Government's strategy to encourage investmant in petroleum exploration. The 2009 release consists of 31 areas in 5 sedimentary basins.

  • This map shows the boundary of the security regulated port for the purpose of the Maritime Transport & Office Security Act 2003. 4 sheets (Colour) April 2009 Not for sale or public distribution Contact Manager LOSAMBA project

  • Geoscience Australia undertakes classification of biophysical datasets to create seabed habitat maps (termed 'seascapes') for the Australian margin and adjacent sea floor. Seascapes describe a layer of ecologically meaningful biophysical properties that spatially represents potential seabed habitats. Each seascape area corresponds to a region of the seabed that contains similar biophysical properties and, by association, potential habitats and communities. The lack of available standardised biological data at the national scale precludes the integration of biological information into the derivation of national seascapes. By focusing on a much smaller scale over tens of kilometres near the Glomar Shoals in Western Australia, referred to as 'local scale', available biological data were integrated into new derivations of seascapes and results compared with seascapes without these data. Using physical data as described in Whiteway et al. 2007 (GA Record 2007/11) and demersal fish data obtained from the 1967 Russian Berg-3 survey, we have derived four new local sets of seascape to compare the effects of integrating biological data: 1) Standard seascapes using only physical data, 2) Seascapes with an additional biology layer based on the Shannon diversity index, 3) Seascapes with an additional biology layer based on the Simpson diversity index, and 4) Seascapes with an additional layer of randomly-generated data. At the 'regional-scale' we derived two sets of seascapes: 1) Seascapes with an additional biology layer based on the Shannon diversity index that encompasses the entire Berg-3 survey area in northwest Australia, and 2) Standard seascapes using only physical data for the same area. This datsets is the regional scale northwest Australian seascape produced with a biological layer called the 'Shannon Diversity Index'.

  • As part of initiatives by the Australian and Queensland Governments to support energy security and mineral exploration, a deep seismic reflection survey was conducted in 2007 to establish the architecture and geodynamic framework of north Queensland. With additional support from AuScope, nearly 1400 km of seismic data were acquired along four lines, extending from near Cloncurry in the west to almost the Queensland coast. Important results based on the interpretation of the deep seismic data include: (1) A major, west-dipping, Paleo-proterozoic (or older) crustal boundary, which we interpret as a suture, separates relatively homogenous, thick crust of the Mt Isa Province from thinner, two layered crust to the east. This boundary is also imaged by magnetotelluric data and 3D inversion of aeromagnetic and gravity data. (2) East of the Mt Isa Province the lower crust is highly reflective and has been subdivided into three mappable seismic provinces (Numil, Abingdon and Agwamin) which are not exposed at the surface. Nd model ages from granites sampled at the surface above the western Numil and central Abingdon Seismic Provinces have very similar Nd model ages, suggesting that both provinces may have had a very similar geological history. By contrast, granites sampled above the eastern Agwamin Seismic Province have much younger Nd model ages, implying a significantly younger component in the lower crust; we consider that the Agwamin Seismic Province contains a strong Grenvillean-age component.

  • short discussion on why and how to define lithostratigraphic units, and where to find information on describing sequence stratigraphic and regolith units.

  • This map shows the boundary of the Maritime Security Zones for each port for the purpose of the Maritime Transport Office Security Act 2003. 4 sheets (Colour) June 2009 Not for sale or public distribution Contact Manager LOSAMBA project