From 1 - 10 / 681
  • A 2-D crustal velocity model has been derived from a 1997 364 km north-south wide-angle seismic profile that passed from Ordovician volcanic and volcaniclastic rocks (Molong Volcanic Belt of the Macquarie Arc) in the north, across the Lachlan Transverse Zone into Ordovician turbidites and Early Devonian intrusive granitoids in the south. The Lachlan Transverse Zone is a proposed west-northwest to east-southeast structural feature in the Eastern Lachlan Orogen and is considered to be a possible early lithospheric feature controlling structural evolution in eastern Australia; its true nature, however, is still contentious. The velocity model highlights significant north to south lateral variations in subsurface crustal architecture in the upper and middle crust. In particular, a higher P-wave velocity (6.24-6.32 km/s) layer identified as metamorphosed arc rocks (sensu lato) in the upper crust under the arc at 5-15 km depth is juxtaposed against Ordovician craton-derived turbidites by an inferred south-dipping fault that marks the southern boundary of the Lachlan Transverse Zone. Near-surface P-wave velocities in the Lachlan Transverse Zone are markedly less than those along other parts of the profile and some of these may be attributed to mid-Miocene volcanic centres. In the middle and lower crust there are poorly defined velocity features that we infer to be related to the Lachlan Transverse Zone. The Moho depth increases from 37 km in the north to 47 km in the south, above an underlying upper mantle with a P-wave velocity of 8.19 km/s. Comparison with velocity layers in the Proterozoic Broken Hill Block supports the inferred presence of Cambrian oceanic mafic volcanics (or an accreted mafic volcanic terrane) as substrate to this part of the Eastern Lachlan Orogen. Overall, the seismic data indicate significant differences in crustal architecture between the northern and southern parts of the profile. The crustal-scale P-wave velocity differences are attributed to the different early crustal evolution processes north and south of the Lachlan Transverse Zone.

  • The Archean Pilbara granitoid-greenstone terrane (GGT) has been the focus of numerous studies on Archaean geology, especially the classic dome-and-basin area around Marble Bar in the east Pilbara. This area has been used as evidence for different tectonic processes, i.e. that vertical tectonics or diapirism was a cause for Archean deformation. This paper provides evidence to support regional horizontal (plate-interaction) stresses as being largely responsible for the compressive deformation of the Pilbara GGT, at least from ca. 3.2 Ga. The relative chronology of meso-to macro-scale structural elements are presented for a number of selected areas across the Pilbara GGT. These locally identified events are correlated with a regional (Pilbara-wide) structural framework of deformation events that are constrained by geochronological and stratigraphic controls. The dome-and-basin geometry characteristic of the east Pilbara was established after 3.2 Ga, and was successively modified by repeated orthogonal extensional and compressive (subhorizontal) events. The result has been a locally complex development of polyphase structural elements with consistent overprinting relationships that can be correlated across much of the Pilbara from 3.2 Ga. Diapirism did not cause these deformation elements, although it may have modified them.

  • Geoscience Australia, ACRES distribute Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data for a series of epochs or time frames covering Australia. The first epoch is 1972. These data have been produced and provided by the Australian Greenhouse Office (AGO). AGO use the data in their National Carbon Accounting System for monitoring land clearing and revegetation. This data is only available through ACRES and ACRES Landsat Distributors, and not through the AGO. More information is available at <a href="http://www.ga.gov.au/acres/prod_ser/agosuite.jsp">http://www.ga.gov.au/acres/prod_ser/agosuite.jsp</a> This data is available in 1:1M tiles or as a full continental Mosaic. Tiles areas are available at: <a href="http://www.ga.gov.au/acres/prod_ser/agotilemap.jsp">http://www.ga.gov.au/acres/prod_ser/agotilemap.jsp</a>

  • Baragwanath Seminar, November 2002.

  • Annual Review Dec 2002

  • Fomin, T., Crawford, A., Arcidiaco, A., and Percival, T., 2002. Refraction/wide-angle seismic studies with vibro source to reveal velocity structure of the Leonora-Laverton tectonic zone, northern Yilgarn. ANSIR Open Day 2002 - Poster.

  • Did you know that landslides kill more people in Australia than earthquakes. Using these activities, encourage your students to understand landslide hazards and how to reduce their own risks. This education resource consists of: - 44 page booklet - 11 reproducible activitities - suggested answers Please note: this booklet does not contain teacher notes. Suitable for secondary levels 7-12

  • These data represent the OZCHRON database of physical age determinations of Australian rocks, and the radiogenic isotope ratios used in determining the ages. OZCHRON datasets comprise bibliographic references, analytical data and pooled results for samples derived using the Rb-Sr, SHRIMP, U-Pb, and Sm-Nd age determination methods.