Published_Internal
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
-
Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software
-
Tropical Cyclone (TC) Tracy impacted Darwin early on Christmas Day, 1974. The magnitude of damage was such that Tracy remains deeply ingrained in the Australian psyche. Several factors contributed to the widespread damage, including the intensity of the cyclone and construction materials employed in Darwin at the time. Since 1974, the population of Darwin has grown rapidly, from 46,000 in 1974 to nearly 115,000 in 2006. If TC Tracy were to strike Darwin in 2008, the impacts could be catastrophic. We perform a validation of Geoscience Australia's Tropical Cyclone Risk Model (TCRM) to assess the impacts TC Tracy would have on the 1974 landscape of Darwin, and compare the impacts to those determined from a post-impact survey. We then apply TCRM to the present-day landscape of Darwin to determine the damage incurred if a cyclone identical to TC Tracy impacted the city in 2008. In validating TCRM against the 1974 impact, we find an underestimate of the damage at 36% of replacement cost (RC), compared the survey estimate of 50-60% RC. Some of this deficit can be accounted for through the effects of large debris. Qualitatively, TCRM can spatially replicate the damage inflicted on Darwin by the small cyclone. The northern suburbs suffer the greatest damage, in line with the historical observations. For the 2008 scenario, TCRM indicates a nearly 90% reduction in the overall loss (% RC) over the Darwin region. Once again, the spatial nature of the damage is captured well, with the greatest damage incurred close to the eye of the cyclone. Areas that have been developed since 1974 such as Palmerston suffer very little damage due to the small extent of the severe winds. The northern suburbs, rebuilt in the years following TC Tracy, are much more resilient, largely due to the influence of very high building standards put in place between 1975 and 1980.
-
No abstract available
-
This map shows the boundary of the security regulated port for the purpose of the Maritime Transport & Office Security Act 2003. 1 sheet (Colour) May 2010 Not for sale or public distribution Contract Manager LOSAMBA project, PMD
-
22-2/D51-16/4-6 Vertical scale: 300
-
Includes copy of AGSO Record 1997/20
-
55% coverage to sth east 22-1/E51-2/9 Vertical scale: 100
-
This folder contains the reports and supporting digital datasets from four geological studies published by SRK (later FrOGTech) consultants, between 2001 and 2007. Known as the OZ SEEBASE Compilation (Structurally Enhanced View of Economic Basement), the studies interpreted the three dimensional character of Australian sedimentary basins and their basement.
-
50% coverage south & east 22-2/K55-3/9-2 Vertical scale: 50
-
includes part of Shepparton to the west 145 deg 22' 30" 22-2/J55-02/18-1 Contour interval: 2