Keyword

Published_Internal

22059 record(s)
 
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
From 1 - 10 / 22059
  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • The tectonic origin, paleoearthquake histories and slip rates of six normal faults (referred to here as the Rahotu, Oaonui, Kina, Kiri, Ihaia and Pihama faults) have been examined for up to ~26 kyr within the Taranaki Rift, New Zealand. A minimum of 13 ground-surface rupturing paleoearthquakes have been recognised on four of the faults using analysis of displaced late Quaternary stratigraphy and landforms. These data, in combination with 21 new radiocarbon dates, constrain the timing, slip and magnitude of each earthquake. The faults have low throw rates (~0.1-0.8 mm/yr) and appear to be buried near the Mt Taranaki volcanic cone. Recurrence intervals between earthquakes on individual faults typically range from 3-10 kyr (average ~ 6 kyr), with slip/earthquake ranging from ~0.3-1.5 m (average ~0.7 m). Recurrence intervals and slip/earthquake typically vary by up to a factor of three on individual faults, with only the Oaonui Fault displaying near-characteristic slip (of about 0.5 m) during successive earthquakes. The timing and slip of earthquakes on individual faults appear to have been interdependent, with each event possibly relieving stress and decreasing the likelihood of additional earthquakes across the system. Earthquake magnitudes are estimated to be M 6.5-6.7. The dating resolution of paleoearthquakes is generally ±1-2 kyr and is presently too imprecise to test the temporal relations between seismic events and either volcanic eruptions or lahars formed by debris avalanches during cone collapse. It is unlikely, however, that formation of the ~7.8 kyr Opua Formation lahar was triggered by a large earthquake on the Rahotu, Oaonui or Kina faults which, of the faults studied, are farthest from the Mt Taranaki volcanic cone.

  • Integrating surface water and groundwater sampling with pore fluid analysis of cored sediments, combined with fuzzy-k means (FCM) cluster analysis, provides a novel, relatively simple but powerful tool to interpret groundwater processes. This methodology has been applied to a study of shallow (<120m) alluvial aquifers in the Darling River floodplain, Pore fluids were extracted from sediments from 100 sonic-cored bores, and together with surface and groundwater samples, provided a hydrochemical dataset with over 1600 samples and 25 analytes. The FCM cluster analysis used analytes that were present in at least 60% of samples and resulted in samples being classified into eight classes (or hydrochemical facies). Pore fluids and groundwaters with the greatest affinity to the surface water samples were easily identified. In this way, sites with significant active recharge, principally by river leakage, were mapped. Downhole plots of the pore fluid FCM classes provided additional insights into groundwater processes. Comparing the FCM classification of pore fluids within the target (semi)confined aquifer with those from the overlying clay aquitard and shallow aquifer allowed the assessment of vertical inter-aquifer leakage. The FCM cluster analysis also assigns indices to each sample as indicators of how well it relates to each of the eight classes. A simple recharge index was calculated from these FCM indices. This novel approach has provided invaluable new insights into groundwater processes and has assisted greatly with assessing groundwater resources and managed aquifer recharge options.

  • No product available. Removed from website 25/01/2019

  • D52/B1-141 Contour interval: 10

  • 95% coverage sth west missing I54/B1-62 Contour interval: 10