From 1 - 10 / 6672
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • This service provides Australian surface hydrology, including natural and man-made features such as water courses (including directional flow paths), lakes, dams and other water bodies. The information was derived from the Surface Hydrology database, with a nominal scale of 1:250,000. The National Basins and Catchments are a national topographic representation of drainage areas across the landscape. Each basin is made up of a number of catchments depending on the features of the landscape. This service shows the relationship between catchments and basins. The service contains layer scale dependencies.

  • This grid is derived from gravity observations stored in the Australian National Gravity Database (ANGD) as at February 2016 as well as data from the 2013 New South Wales Riverina gravity survey. Out of the approximately 1.8 million gravity observations 1,371,998 gravity stations in the ANGD together with 19,558 stations from the Riverina survey were used to generate this image. The grid shows isostatic residual gravity anomalies over onshore continental Australia. The data used in this grid has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. The isostatic corrections were based on the assumption that topographic loads are compensated at depth by crustal roots following the Airy-Heiskanen isostatic principle. A crustal density of 2670 kg/m3 was used for the isostatic correction, with an assumed density contrast between the crust and mantle of 400 kg/m3. An initial average depth to Moho at sea level of 37 km was used in the calculation. The isostatic corrections were then applied to the Complete Bouguer Gravity Anomaly Grid of Onshore Australia 2016 to produce the Isostatic Residual Gravity Anomaly Grid of Onshore Australia 2016.

  • We collected 38 groundwater and two surface water samples in the semi-arid Lake Woods region of the Northern Territory to better understand the hydrogeochemistry of this system, which straddles the Wiso, Tennant Creek and Georgina geological regions. Lake Woods is presently a losing waterbody feeding the underlying groundwater system. The main aquifers comprise mainly carbonate (limestone and dolostone), siliciclastic (sandstone and siltstone) and evaporitic units. The water composition was determined in terms of bulk properties (pH, electrical conductivity, temperature, dissolved oxygen, redox potential), 40 major, minor and trace elements as well as six isotopes (δ18Owater, δ2Hwater, δ13CDIC, δ34SSO4=, δ18OSO4=, 87Sr/86Sr). The groundwater is recharged through infiltration in the catchment from monsoonal rainfall (annual average rainfall ~600 mm) and runoff. It evolves geochemically mainly through evapotranspiration and water–mineral interaction (dissolution of carbonates, silicates, and to a lesser extent sulfates). The two surface waters (one from the main creek feeding the lake, the other from the lake itself) are extraordinarily enriched in 18O and 2H isotopes (δ18O of +10.9 and +16.4 ‰ VSMOW, and δ2H of +41 and +93 ‰ VSMOW, respectively), which is interpreted to reflect evaporation during the dry season (annual average evaporation ~3000 mm) under low humidity conditions (annual average relative humidity ~40 %). This interpretation is supported by modelling results. The potassium (K) relative enrichment (K/Cl mass ratio over 50 times that of sea water) is similar to that observed in salt-lake systems worldwide that are prospective for potash resources. Potassium enrichment is believed to derive partly from dust during atmospheric transport/deposition, but mostly from weathering of K-silicates in the aquifer materials (and possibly underlying formations). Further studies of Australian salt-lake systems are required to reach evidence-based conclusions on their mineral potential for potash, lithium, boron and other low-temperature mineral system commodities such as uranium. <b>Citation:</b> P. de Caritat, E. N. Bastrakov, S. Jaireth, P. M. English, J. D. A. Clarke, T. P. Mernagh, A. S. Wygralak, H. E. Dulfer & J. Trafford (2019) Groundwater geochemistry, hydrogeology and potash mineral potential of the Lake Woods region, Northern Territory, Australia, <i>Australian Journal of Earth Sciences</i>, 66:3, 411-430, DOI: 10.1080/08120099.2018.1543208

  • This service has been created specifically for display in the National Map and the chosen symbology may not suit other mapping applications. The Australian Topographic web map service is seamless national dataset coverage for the whole of Australia. These data are best suited to graphical applications. These data may vary greatly in quality depending on the method of capture and digitising specifications in place at the time of capture. The web map service portrays detailed graphic representation of features that appear on the Earth's surface. These features include the administration boundaries from the Geoscience Australia 250K Topographic Data, including state forest and reserves.

  • This service is produced for the National Map project. It provides seamless topographic greyscale mapping for the whole of Australia, including the external territories of Cocos (Keeling) Islands, Christmas Island, Norfolk Island and Lord Howe Island. The service consists of Geoscience Australia data at smaller scales and OpenStreetMap data is used at larger scales. The service contains layer scale dependencies.

  • A new approach was developed for Australia's 2011 national State of the Environment (SoE) report to integrate the assessment of biophysical and human elements of the environment. A Common Assessment and Reporting Framework (CARF) guided design and implementation, responding to jurisdictional complexity, outstanding natural diversity and ecosystem values, high levels of cultural and heritage diversity, and a paucity of national-scale data. The CARF provided a transparent response to the need for an independent, robust and evidence-based national SoE report. We conclude that this framework will be effective for subsequent national SoE assessments and other integrated national-scale assessments in data poor regions.

  • This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).

  • Google has partnered with hundreds of museums, cultural institutions and archives including Geoscience Australia to host treasures from our National Mineral and Fossil Collection online on the Google Arts & Culture website. Our building's public areas have been scanned and are online via a streetview virtual tour, there are a large number of collection items uploaded which have been used to create many unique and fascinating exhibits.

  • The Upper Burdekin Basalt extents web service delivers province extents, detailed geology, spring locations and inferred regional groundwater contours for the formations of the Nulla and McBride Basalts. This work has been carried out as part of Geoscience Australia's Exploring for the Future program.