From 1 - 10 / 362
  • Australia's Identified Mineral Resources is an annual national assessment that takes a long-term view of Australian mineral resources likely to be available for mining. The assessment also includes evaluations of long-term trends in mineral resources, world rankings, summaries of significant exploration results and brief reviews of mining industry developments.

  • Australian Community Climate and Earth-System (ACCESS) Numerical Weather Prediction (NWP) data is made available by the Bureau of Meteorology for registered subscribers such as GA. ACCESS-C3 (City) model is a forecast-only model performed every 6 hours and consists of grid coordinates covering domains around Sydney, Victoria and Tasmania, Brisbane, Perth, Adelaide and Darwin. ACCESS Impact Modelling (ACCESS-IM) System utilise information from ACCESS-NWP on the forecast wind gust speeds ground surface (single-level) at 10 metres, simulated by the ACCESS-C3 model, for the time period of 0-12, 12-24, 24-36, 0-36.

  • Prior to the development of Australian-specific magnitude formulae, the 1935 magnitude corrections by Charles Richter – originally developed for southern California – was almost exclusively used to calculate earthquake magnitudes throughout Australia prior to the 1990s. Due to the difference in ground-motion attenuation between southern California and much of Australia, many historical earthquake magnitudes are likely to be overestimated in the Australian earthquake catalogue. A method has been developed that corrects local magnitudes using the difference between the original (inappropriate) magnitude corrections and the Australian-specific corrections at a distance determined by the nearest recording station likely to have recorded the earthquake. These corrections have reduced the rates of local magnitudes of 4.5 in the historical catalogue by about 30% since 1900, while the number of magnitude 5.0 earthquakes has reduced by about 60% in the same time period. The reduction in the number of moderate-to-large-magnitude earthquakes over the instrumental period yields long-term earthquake rates that are more consistent with present-day rates, since the development of Australian-specific magnitude formulae. The adjustment of historical earthquake magnitudes is important for seismic hazard assessments, which assume a Poisson distribution of earthquakes in space and time.

  • This web service provides access to the Geoscience Australia (GA) ISOTOPE database containing compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. The web service includes point layers (WFS, WMS, WMTS) with age and isotopic attribute information from the ISOTOPE database, and raster layers (WMS, WMTS, WCS) comprising the Isotopic Atlas grids which are interpolations of the point located age and isotope data in the ISOTOPE database.

  • A review of mineral exploration trends, activities and discoveries in Australia in 2020

  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2021 acreage release consists of 21 areas offshore of Western Australia, Victoria, Tasmania and the Ashmore and Cartier Islands.

  • The Earthquake Scenario Selection is an interactive tool for querying, visualising and downloading earthquake scenarios. There are over 160 sites nationally with pre-generated scenarios available. These represent plausible future scenarios that can be used for earthquake risk management and planning (see https://www.ga.gov.au/about/projects/safety/nsha for more details).

  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2021 acreage release consists of 21 areas offshore of Western Australia, Victoria, Tasmania and the Ashmore and Cartier Islands.

  • To deliver open data, government agencies must deal with legacy processes, both social and technical, that contain barriers to openness. These barriers limit the true usability of open data - how it can be used over time and in multiple contexts - and are critical to address as governments seek to expose open data. Linked Data (LD) has always been, at its core, about ensuring the FAIR Data Principles (Findable, Accessible, Interoperable, Reusable) by focusing on the identity and relationship of entities and exposing their context to consumers of data, even if these principles have only recently been named FAIR. A fundamental component of LD is that entities are identified by sustainable URI references called Persistent Identifiers (PIDs) which retain their utility over time despite system and organisation change. This poster will show how Geoscience Australia (GA) is applying the use of LD & PIDS in a real world, production IT, setting. Long running operational processes have been incrementally advanced to deliver data from relational databases as LD. Policies, practices and tools have developed and applied to support these LD delivery. The key components are: Data transformation tools: reliant on a robust internal data schema, the Corporate Data Model, these tools export views of it as XML or CSV publicly which is then converted to RDF in another step Overarching data model: a Semantic Web ontology that outlines the types of entities delivered publicly by GA and their macro relations. To date, public entities are Datasets, Web Services, vocabulary terms and geological Samples, Sites Surveys and Stratigraphic Units. New objects will include images with multiple formats and resolutions PID service: an application that manages a series of PID redirection rules PID governance policy: the defined process to support the agency with its multiple teams and their different data sources to have consistent application of entity identification rules and ensure uniqueness across multiple systems in the same registers pyLDAPI data service tools: a Web API tool that can present LD endpoints for entities according to given ontologies Cloud infrastructure as code (infracode): Provisioning of LD data holding RDF triple stores on the public cloud following agency best practice in delivering scalable solutions. The tools used are Apache’s Jena/Fuseki triplestore and API deployed on Amazon Web Services (AWS) with scalability through AWS Elastic Load Balancer and Elastic File Store components. Further work will explore suitability of the new triple store on AWS Neptune.