From 1 - 10 / 52
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • This service provides Australian surface hydrology, including natural and man-made features such as water courses (including directional flow paths), lakes, dams and other water bodies. The information was derived from the Surface Hydrology database, with a nominal scale of 1:250,000. The National Basins and Catchments are a national topographic representation of drainage areas across the landscape. Each basin is made up of a number of catchments depending on the features of the landscape. This service shows the relationship between catchments and basins. The service contains layer scale dependencies.

  • This report presents key results from the Upper Burdekin Groundwater Project conducted as part of Exploring for the Future (EFTF)—an eight year Australian Government funded geoscience data and information acquisition program. The first four years of the Program (2016–20) aimed to better understand the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project focused on the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) in the Upper Burdekin region of North Queensland. It was undertaken as a collaborative study between Geoscience Australia and the Queensland Government. This document reports the key findings of the project, as a synthesis of the hydrogeological investigation project and includes maps and figures to display the results.

  • Background It is important to know where water is normally present in a landscape, where water is rarely observed, and where inundation has occasionally occurred. These observations tell us where flooding has occurred in the past, and allows us to understand wetlands, water connectivity and surface-groundwater relationships. This can lead to more effective emergency management and risk assessment. This is the principal Digital Earth Australia (DEA) Water product (previously known as Water Observations from Space (WOfS)), providing the individual water observations per satellite image that are subsequently used in the following DEA Watersuite and related water bodies products: DEA Waterbodies (Landsat), DEA Water Observations Statistics (Landsat), DEA Water Observations Filtered Statistics (Landsat). This product shows where surface water was observed by the Landsat satellites on any particular day since mid 1986. These daily data layers are termed Water Observations (WOs). What this product offers DEA Water Observations provides surface water observations derived from Landsat satellite imagery for all of Australia from 1986 to present. The Water Observationsshow the extent of water in a corresponding Landsat scene, along with the degree to which the scene was obscured by clouds, shadows or where sensor problems cause parts of a scene to not be observable.

  • This service provides Australian surface hydrology, including natural and man-made features such as water courses (including directional flow paths), lakes, dams and other water bodies. The information was derived from the Surface Hydrology database, with a nominal scale of 1:250,000. The service contains layer scale dependencies.

  • Digital elevation models (DEMs) reflect the morphology of landscape surfaces and attributes derived from these models, including slope, aspect, relief and topographic wetness index. DEMs have broad application in geomorphology, geology, hydrology, ecology and climatology. Here, we consider two important terrain attributes: topographic position index and topographic ruggedness. Topographic position index measures the topographic slope position of landforms. It compares the mean elevation of a specific neighbourhood area with the elevation value of a central cell. This is done for every cell or pixel in the DEM to derive the relative topographic position (e.g. upper, middle, lower landscape elements). Ruggedness refers to the roughness of the surface and is calculated as the standard deviation of elevations. Both these terrain attributes are scale dependent and will vary according to the size of the analysis window. Here, we generated a multiscale topographic position model over the Australian continent using a 3-second resolution (~90 m) DEM derived from the Shuttle Radar Topography Mission. The algorithm calculates topographic position scaled by the corresponding ruggedness across three spatial scales (window sizes): 0.2–8.1 km, 8.2–65.2 km and 65.6–147.6 km. The derived ternary image captures variations in topographic position across these spatial scales, giving a rich representation of nested landform features, with broad application to understanding geomorphological and hydrological processes, and mapping regolith and soils. <b>Citation:</b> Wilford, J., Basak, S. and Lindsay, J., 2020. Multiscale topographic position image of the Australian continent. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.

  • This specification describes the aggregation of jurisdictional data that is maintained by Geoscience Australia. Currently this data is made up of a mixture of scale ranging from 1:25,000 to 1:250,000 across the continent.

  • The Surface Hydrology Polygons (National) dataset presents the spatial locations of surface hydrology polygon features and its attributes. The dataset represents the Australia's surface hydrology at a national scale. It includes natural and man-made geographic features such as: watercourse areas, swamps, reservoirs, canals, etc. This product presents hydrology polygon features which will topological connect with the hydrology line features and forms a complete flow path network for the entire continental of Australia.

  • The North Australian Zinc Belt is the largest zinc–lead province in the world, containing 3 of the 10 largest individual deposits known. Despite this pedigree, exploration in this province during the past two decades has not been particularly successful, yielding only one significant deposit (Teena). One of the most important aspects of exploration is to choose regions or provinces that have greatest potential for discovery. Here, we present results from zinc belts in northern Australia and North America, which highlight previously unused datasets for area selection and targeting at the craton to district scale. Lead isotope mapping using analyses of mineralised material has identified gradients in μ (238U/204Pb) that coincide closely with many major deposits. Locations of these deposits also coincide with a gradient in the depth of the lithosphere–asthenosphere boundary determined from calibrated surface wave tomography models converted to temperature. In Australia, gradients in upward-continued gravity anomalies and a step in Moho depth corresponding to a pre-existing major crustal boundary are also observed. The change from thicker to thinner lithosphere is interpreted to localise prospective basins for zinc–lead and copper–cobalt mineralisation, and to control the gradient in lead isotope and other geophysical data. <b>Citation:</b> Huston, D.L., Champion, D.C., Czarnota, K., Hutchens, M., Hoggard, M., Ware, B., Richards, F., Tessalina, S., Gibson, G.M. and Carr, G., 2020. Lithospheric-scale controls on zinc–lead–silver deposits of the North Australian Zinc Belt: evidence from isotopic and geophysical data. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.