hydrology
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.
-
In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. In this study, the condition of two of Australia's iconic riparian and floodplain vegetation elements, River Red Gums (Eucalyptus camaldulensis) and Black Box (E. largiflorens) are examined in relation to differing hydraulic regimes. With increases in regulation along Murray-Darling Basin rivers, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Rather than undertaking a field based assessment of tree health in response to current water regimes, this paper documents a remote sensing study that assessed historic response of vegetation to a range of different climatic and hydraulic regimes at a floodplain scale. This methodology innovatively combined high-resolution vegetation structural mapping derived from LiDAR data (Canopy Digital Elevation Model and Foliage Projected Cover) with 23 years of Landsat time-series data. Statistical summaries of Normalised Difference Vegetation Index values were generated for each spatially continuous vegetation structural class (e.g. stand of closed forest) for each Landsat scene. Consequently long-term temporal change in vegetation condition was assessed against different water regimes (drought, local rainfall, river bank full, overbank flow, and lake filling). Results provide insight into vegetation response to different water sources and overall water availability. Additionally, some inferences can be made about lag times associated with vegetation response and the duration of the response once water availability has declined (e.g. after floodwaters recede). This methodology should enable water managers to better assess the adequacy of environmental flows.
-
The purpose of this paper is to investigate and quantify the accuracy with which hydrological signals in the Murray-Darling Basin, southeast Australia can be estimated from GRACE. We assessed the extent to which the Earth's major geophysical processes contaminate the gravitational signals in the Basin. Eighteen of the world's largest geophysical processes which generate major gravitational signals (e.g. melting of the Greenland icesheet, hydrology in the Amazon Basin) were simulated and the proportion of the simulated signal detected in the Murray - Darling Basin was calculated. The sum of the cumulative effects revealed a maximum of ~4 mm (equivalent water height) of spurious signal was detected within the Murray - Darling Basin; a magnitude smaller than the uncertainty of the basin-scale estimates of changes in total water storage. Thus, GRACE products can be used to monitor broad scale hydrologic trends and variability in the Murray-Darling Basin without the need to account for contamination of the estimates from external geophysical sources.
-
Mean monthly and mean annual areal actual, areal potential and point potential evapotranspiration grids. The grids show the evapotranspiration values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). The grid point resolution of the data is 0.1 degrees ( approximately 10km). As part of the 3-D analysis process a 0.1 degree resolution digital elevation model (DEM) was used. Approximately 700 stations were used in the analysis, and all input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality. Areal Actual ET is the ET that actually takes place, under the condition of existing water supply, from an area so large that the effects of any upwind boundary transitions are negligible and local variations are integrated to an areal average. Areal Potential ET is the ET that would take place, under the condition of unlimited water supply, from an area so large that the effects of any upwind boundary transitions are negligible and local variations are integrated to an areal average. Point Potential ET is the ET that would take place, under the condition of unlimited water supply, from an area so small that the local ET effects do not alter local airmass properties. It is assumed that latent and sensible heat transfers within the height of measurement are through convection only. The above definitions are based on those given by Morton (1983), but we have used the term areal potential ET for Mortons wet-environment ET and the term point potential ET for Mortons potential ET. Morton, F.I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66: 1-76.
-
The purpose of this paper is to investigate and quantify the accuracy with which hydrological signals in the Murray-Darling Basin, southeast Australia can be estimated from GRACE. We assessed the extent to which the Earth's major geophysical processes contaminate the gravitational signals in the Basin. Eighteen of the world's largest geophysical processes which generate major gravitational signals (e.g. melting of the Greenland icesheet, hydrology in the Amazon Basin) were simulated and the proportion of the simulated signal detected in the Murray - Darling Basin was calculated. The sum of the cumulative effects revealed a maximum of ~4 mm (equivalent water height) of spurious signal was detected within the Murray - Darling Basin; a magnitude smaller than the uncertainty of the basin-scale estimates of changes in total water storage. Thus, GRACE products can be used to monitor broad scale hydrologic trends and variability in the Murray-Darling Basin without the need to account for contamination of the estimates from external geophysical sources.
-
This document describes a structure for exchanging information to assist discovery and retrieval/transfer of flood information, including GIS flood mapping data. The draft class model represents metadata, data and summary information that supports the goals of the National Flood Risk Information Project (NFRIP) to improve the quality, consistency and accessibility of flood information. This document describes the data model that will be used to create an application schema.
-
Mean monthly and mean annual rainfall grids. The grids show the rainfall values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). The resolution of the data is 0.025 degrees ( approximately 2.5km) - as part of the 3-D analysis process a 0.025 degree resolution digital elevation model (DEM) was used. Approximately 6000 stations were used in the analysis over Australia. All input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality.
-
The AusHydro database provides a seamless surface hydrography layer for Australia at a nominal scale of 1:250,000. It consists of lines, points and polygons representing natural and man-made features such as water courses, lakes, dams and other water bodies. The natural water course layer consists of a linear network with a consistent topology of links and nodes that provide directional flow paths through the network for hydrological analysis. This network was used to produce the National 9 second Digital Elevation Model (DEM) of Australia (http://www.ga.gov.au/nmd/products/digidat/dem_9s.jsp). Surface Hydrology Dataset is an amalgamation of two primary datasets. The first is the hydrographic component of the GEODATA TOPO 250K Series 3 product released by Geoscience Australia in 2006 . The Series 3 dataset contains the following hydrographic features: canal lines, locks, rapid lines, spillways, waterfall points, bores, canal areas, flats, lakes, pondage areas, rapid areas, reservoirs, springs, watercourse areas, waterholes, water points, marine hazard areas, marine hazard points and foreshore flats.It also provides information on naming, hierarchy and perenniality. The dataset also contains Cultural and Transport features that may intersect with hydrography features. These include: Railway Tunnels, Rail Crossings, Railway Bridges, Road Tunnels, Road Bridges, Road Crossings, Water Pipelines. Refer to the GEODATA TOPO 250K Series 3 User Guide http://www.ga.gov.au/image_cache/GA8349.pdf for additonal information The second primary dataset is based on the GEODATA TOPO-250K Series 1 water course lines completed by Geoscience Australia in 1994, which has been supplemented by additional line work captured by the Australian National University during the production of the 9 second DEM to improve the representation of surface water flow. This natural watercourse dataset consists of directional flow paths and provides a direct link to the flow paths derived from the DEM. There are approximately 700,000 more line segments in this version of the data. AusHydro 1.0 uses the natural watercourse geometry from the ANU-enhanced Series 1 data, and the attributes (names, perenniality and hierarchy) associated with Series 3 to produce a fully attributed data set with topologically correct flow paths. The attributes from Series 3 were attached using spatial queries to identify common features between the 2 datasets. Additional semi-automated and manual editing was then undertaken to ensure consistent attribution along the entire network. WatercourseLines includes a unique identifier for each line segment (AusHydro-ID) which will be used to maintain the dataset, and to incorporate higher resolution datasets in the future. The AusHydro-ID will be linked to the ANUDEM-Derived (raster) streams through a common segment identifier, and ultimately to a set of National Catchments and Reporting Units (NCRU). Purpose Surface Hydrology Dataset is the reconciliation of the hydrological features in the two data sets to produce a single authoritative national stream network and water body data set suitable for hydrological analysis at national scales. It uses the natural watercourse geometry from the ANU-enhanced Series 1 data, and the attributes (names, perenniality and hierarchy) associated with Series 3 to produce a fully attributed data set with topologically correct flow paths.
-
This record has been created for Sales to be able to invoice data requests that occur from downloading of data from the National Elevation Data Framework (NEDF) Web Portal. The Portal was set up in 2010 and data more than 400MB needs to be downloaded from the holding pen on the NEDF server and copied onto media and sent to the requester. Each data request will come with metadata and the appropriate data licence.
-
Four data formats are available for download, three vector (e00, mif, shp) and one raster (ecw).