From 1 - 10 / 50
  • A new continental-scale geochemical atlas and dataset for Australia were officially released into the public domain at the end of June 2011. The National Geochemical Survey of Australia (NGSA) project, which started in 2007 under the Australian Government's Onshore Energy Security Program at Geoscience Australia, aimed at filling a huge knowledge gap relating to the geochemical composition of surface and near-surface materials in Australia. Better understanding the concentration levels and spatial distributions of chemical elements in the regolith has profound implications for energy and mineral exploration, as well as for natural resource management. In this world first project, a uniform regolith medium was sampled at an ultra-low density over nearly the entire continent, and subsamples from two depths and two grain-size fractions were analysed using up to three different (total, strong and weak) chemical digestions. This procedure yielded an internally consistent and comprehensive geochemical dataset for 68 chemical elements (plus additional bulk properties). From its inception, the emphasis of the project has been on quality control and documentation of procedures and results, and this has resulted in eight reports (including an atlas containing over 500 geochemical maps) and a large geochemical dataset representing the significant deliverables of this ambitious and innovative project. The NGSA project was carried out in collaboration with the geoscience agencies from every State and the Northern Territory under National Geoscience Agreements. .../...

  • Several quality control measures were taken during the project. These included: - Central provision of sampling equipment and sample bags to all field teams - Randomised sample identification scheme so that samples were presented to the laboratories in a sequence unrelated to the order in which they were collected (as much as practically feasible) - Prevention of contamination in the field and in the lab - Prevention of sample mix-up in the field and in the lab - Field duplicates: every 10th site, a field duplicate sample was collected to help quantify total (sampling + analytical) precision (not identified as such to the lab) - Certified Reference Materials (CRMs) TILL-1, TILL-2 (Natural Resources Canada) were run with every batch on GA's XRF & ICP-MS to help quantify analytical precision and bias - Laboratory duplicates (splits), internal project standards (MRIS, WRIS, ORIS, MRIS2, WRIS2), exchanged project standards (GEMAS-Ap, GEMAS-Gr from EuroGeoSurveys; SoNE-1 from United States Geological Survey), and international CRMs (TILL-1, TILL-3, LKSD-1, STSD-3 from Natural Resources Canada) were covertly inserted in the analytical suites for in-house and external analyses to help quantify analytical precision and bias (not identified as such to the lab) - Internal project standard (GRIS) for pH 1:5, EC 1:5 and grain size measurements (not identified as such to the lab) In addition to the above measures, the analytical labs applied their own QA/QC procedures, including running CRMs and/or internal standards, replicating digests and/or analysis, and analysis of blanks. The present report uses some of the above data to quantitatively assess the quality of the NGSA data, which allows a quality statement to be made about the NGSA data.

  • Geochemical data from two continental-scale soil surveys in Europe and Australia are presented and compared. Internal project standards were exchanged to assess comparability of analytical results. The total concentration of 26 elements (Al, As, Ba, Ca, Ce, Co, Cr, Fe, Ga, K, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Si, Sr, Th, Ti, V, Y, Zn, and Zr), Loss On Ignition (LOI) and pH are found to be comparable. In addition, for the first time, directly comparable data for 14 elements in an aqua regia extraction (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo, and Pb) are provided for both continents. Median soil compositions are remarkably close, though overall Australian soils are slightly depleted in all elements with the exception of SiO2 and Zr. This is interpreted to reflect the overall longer and, in places, more intense weathering in Australia. Calculation of the Chemical Index of Alteration (CIA) gives a median value of 72% for Australia compared to 60% for Europe. In general, element concentrations vary over 3 (and up to 5) orders of magnitude. Several elements (As, Ni, Co, Bi, Li, Pb, Mn, and Cu) have a lower element concentration by a factor of 2-3 in the soils of northern Europe compared to southern Europe. The break in concentration coincides with the maximum extent of the last glaciation. In Australia the central region with especially high SiO2 concentrations is commonly depleted in many elements. The data provided define the natural background variation for two continents on both hemispheres based on real data. Judging from the experience of these two continental surveys it can be concluded that analytical quality is the key requirement for the success of global geochemical mapping.

  • Spectral data from airborne and ground surveys enable mapping of the mineralogy and chemistry of soils in a semi-arid terrain of Northwest Queensland. The study site is a region of low relief, 20 km southeast of Duchess near Mount Isa. The airborne hyperspectral survey identified more than twenty surface components including vegetation, ferric oxide, ferrous iron, MgOH, and white mica. Field samples were analysed by spectrometer and X-ray diffraction to test surface units defined from the airborne data. The derived surface materials map is relevant to soil mapping and mineral exploration, and also provides insights into regolith development, sediment sources, and transport pathways, all key elements of landscape evolution.

  • Global-scale mapping of surface mineralogy is now becoming possible using remote hyperspectral sensing technologies. Global-scale mineral maps have now been generated for Mars using thermal infrared hyperspectral data collected from the Mars-orbiting Thermal Emission Spectrometer (TES- http://jmars.asu.edu/data/), including maps of feldspar, pyroxene, olivine and quartz contents. Other mineral maps of Mars are now being assembled using the recently launched Compact Reconnaissance Imaging Spectrometer (CRISM - http://crism.jhuapl.edu/), including sulphates, kaolinite, illite/muscovite, chlorites, carbonate and water (www.lpi.usra.edu/meetings/7thmars2007/pdf/3270.pdf). In contrast, even though mapping the mineralogy of the Earth's land surface can improve understanding and management of Earth's resources, including: - monitoring of soils (acid sulphate soils, salinity, soils loss and soil carbon); - better characterisation of regolith materials (e.g. transported versus in situ); - discovery of new mineral deposits using alteration vectors; and - more accurate environmental assessments during resource exploitation (baseline mapping, monitoring and closure)

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release reference facility to simulate surface emissions of CO2 (and other GHG gases) from an underground slotted horizontal well into the atmosphere under controlled conditions. The facility is located at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The design of the facility is modelled on the ZERT controlled release facility in Montana. The facility is equipped with a 2.5 tonne liquid CO2 storage vessel, vaporiser and mass flow controller unit with a capacity for 6 individual metered CO2 gas streams (up to 600 kg/d capacity). Injection of CO2 into soil is via a shallow (2m depth) underground 120m horizontally drilled slotted HDPE pipe. This is equipped with a packer system to partition the well into six CO2 injection chambers. The site is characterised by the presence of deep red and yellow podsolic soils with the subsoil containing mainly kaolinite and subdominant illite. Injection is above the water table. The choice of well orientation based upon the effects of various factors such as topography, wind direction, soil properties and ground water depth will be discussed. An above ground release experiment was conducted from July - October 2010 leading to the development of an atmospheric tomography technique for quantifying and locating CO2 emissions1. This technique will be applied to the first sub-surface experiment held in January-March 2012 in addition to soil flux surveys, microbiological surveys, and tracer studies. An overview of monitoring experiments conducted during the subsurface release and preliminary results will be presented. Additional CO2 releases are planned for late 2012 and 2013. Abstract for "11th Annual Conference on Carbon Capture Utilization & Sequestration" April 30 - May 3, 2012, Pittsburgh, Pennsylvania

  • A new continental-scale geochemical atlas and dataset were officially released into the public domain at the end of June 2011. The National Geochemical Survey of Australia (NGSA) project, which started in 2007 under the Australian Government's Onshore Energy Security Program at Geoscience Australia, aimed at filling a huge knowledge gap relating to the geochemical composition of surface and near-surface materials in Australia. Better understanding the concentration levels and spatial distributions of chemical elements in the regolith has profound implications for energy and mineral exploration, as well as for natural resource management. In this world first project, a uniform regolith medium was sampled at an ultra-low density over nearly the entire continent, and subsamples from two depths and two grain-size fractions were analysed using up to three different (total, strong and weak) chemical digestions. This procedure yielded an internally consistent and comprehensive geochemical dataset for 68 chemical elements (plus additional bulk properties). From its inception, the emphasis of the project has been on quality control and documentation of procedures and results, and this has resulted in eight reports (including an atlas containing over 500 geochemical maps) and a large geochemical dataset representing the significant deliverables of this ambitious and innovative project. The NGSA project was carried out in collaboration with the geoscience agencies from every State and the Northern Territory under National Geoscience Agreements. .../...

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release facility to simulate surface emissions of CO2 (and other greenhouse gases) from the soil into the atmosphere under controlled conditions. The facility is located at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The design of the facility is modelled on the ZERT controlled release facility in Montana. The facility is equipped with a 2.5 tonne liquid CO2 storage vessel, vaporiser and mass flow controller unit with a capacity for 6 individual metered CO2 gas streams (up to 600 kg/d capacity in total). Injection of CO2 into the soil is via a 120m long slotted HDPE pipe installed horizontally 2m underground. This is equipped with a packer system to partition the well into six CO2 injection chambers. The site is characterised by the presence of deep red and yellow podsolic soils with the subsoil containing mainly kaolinite and subdominant illite. Injection is above the water table. The choice of well orientation based upon the effects of various factors such as topography, wind direction, soil properties and ground water depth will be discussed. An above ground release experiment was conducted from July - October 2010 leading to the development of an atmospheric tomography technique for quantifying and locating CO2 emissions1. An overview of monitoring experiments conducted during the first subsurface release (January-March 2012), including application of the atmospheric tomography technique, soil flux surveys, microbiological surveys, and tracer studies, will be presented. Additional CO2 release experiments are planned for late 2012 and 2013. Poster presented at 11th Annual Conference on Carbon Capture Utilization & Sequestration, April 30 - May 3, 2012, Pittsburgh, Pennsylvania

  • The National Geochemical Survey of Australia (NGSA) project has collected catchment outlet sediment samples from 1315 sites located in 1186 catchments (~10% of which were sampled in duplicate) covering over 80% of Australia, in a collaborative venture between Geoscience Australia and the geoscience agencies of all States and the Northern Territory. At each site, composited samples were collected from two depth intervals: (1) the Top Outlet Sediment from 0-10 cm depth, and (2) the Bottom Outlet Sediment from 60-80 cm depth on average. In the laboratory, the samples were dried, homogenised and separated into two grain-size fractions: (1) a 'coarse' fraction (0-2 mm), and (2) a 'fine' fraction (0-75 um). All together, thus, 5260 samples were prepared for analysis. Bulk splits were also separated for the determination of bulk properties. Samples were analysed for up to 68 chemical elements after Total, Aqua Regia and Mobile Metal Ion digestion methods. Several quality control measures were taken throughout the project and the data quality was assessed in a separate report. This report used the acquired geochemical data to investigate the preliminary implications of this new national dataset on exploration for energy and mineral resources in Australia. This was mostly done by overlaying the NGSA data on coverages of known deposits and occurrences for selected commodities: uranium (U), thorium (Th), gold (Au), copper (Cu), lead (Pb), zinc (Zn) and Rare Earth Elements (REEs). For U, an attempt was made to distinguish between calcrete-related and intrusion-related deposit types, and a local case study in the Pine Creek area is also presented. For Zn, preliminary results from an investigation into discrete field modelling using concentration-area (CA) fractal plots are also presented. Coincidence of known mineral deposits and occurrences with elevated geochemical element concentrations in the same catchment are highlighted. Several catchments have elevated geochemical element concentrations in catchments with no known mineral deposits or occurrences, which provide potential targets for exploration. This technique constitutes a useful and rapid tool for area selection where further, more detailed exploration effort could be expended to test these geochemical anomalies.

  • We describe the information content of soil visible-near infrared (vis-NIR) reflectance spectra and map their spatial distribution across Australia. The spectra of 4030 surface soil sample from across the country were measured using a vis-NIR spectrometer with a wavelength range between 350-2500 nm. The spectra were treated using a principal component analysis (PCA) and the resulting scores were mapped by ordinary point kriging. The largely dominant and common feature in the maps was the difference between the more expansive, older and more weathered landscapes in the centre and west of Australia and the generally younger, more complex landscapes in the east. A surface soil class map derived from the clustering of the principal components was similar to an existing soil classification map. We show that vis-NIR reflectance spectra: (i) provide an integrative measure to rapidly and efficiently measure the constituents of the soil, (ii) can replace the use of traditional soil properties to describe the soil and make geomorphological interpretations of its spatial distribution and (iii) can be used to classify soil objectively.