From 1 - 10 / 139
  • In September and October of 2011 Geoscience Australia surveyed part of the offshore northern Perth Basin in order to map potential sites of natural hydrocarbon seepage. The primary objectives of the survey were to map the spatial distribution of seepage sites and characterise the nature of the seepage at these sites (gas vs oil, macroseepage vs microseepage; palaeo vs modern day seepage) on the basis of: acoustic signatures in the water column, shallow subsurface and on the seabed; geochemical signatures in rock and sediment samples and the water column; and biological signatures on the seabed. Areas of potential natural hydrocarbon seepage that were surveyed included proven (drilled) oil and gas accumulations, a breached structure, undrilled hydrocarbon prospects, and areas with potential signatures of fluid seepage identified in seismic, satellite remote sensing and multibeam bathymetry data. Within each of these areas the survey acquired: water column measurements with the CTD; acoustic data with single- and multi-beam echosounders, sidescan sonar and sub-bottom profiler (sidescan not acquired in Area F as it was too deep in places); and sediment and biological samples with the Smith-McIntyre Grab. In addition, data were collected with a remotely operated vehicle (ROV), integrated hydrocarbon sensor array, and CO2 sensor in selected areas. Sampling with the gravity corer had limited success in many of the more shallow areas (A-E) due to the coarse sandy nature of the seabed sediments. This dataset comprises sediment oxygen demand measurements from the upper 2 cm of seafloor sediments.

  • The Marine Science Voyage (2010/11 VMS) to the Mertz Glacier region was a collaborative survey involving scientists from a number of research institutions, working across a number of different projects, with the overall aim of conducting a coordinated and comprehensive study to measure and monitor the impact of the Mertz Glacier calving event on the local and regional environment. The survey took place in January 2011 and enabled the collection of data shortly after the calving event so that physical, chemical and biological changes in response to the new conditions can be monitored over time. As such, data collected on VMS will provide a benchmark for tracking future change in the Mertz Glacier region environment. Geoscience Australia and the Australian Antarctic Division conducted a benthic community survey during the voyage. The purpose of the benthic community survey was to collect high-resolution still images of the sea floor to address three main objectives: 1. to investigate benthic community composition in the area previously covered by the MGT and to the east, an area previously covered by approximately 30 m of fast ice; 2. to investigate benthic community composition (or lack thereof) in areas of known iceberg scours; and 3. to investigate the lateral extent of hydrocoral communities along the shelf break. The survey collected over 1800 images of the sea floor on the continental shelf and slope in the Mertz Glacier region, including in the area previously covered by the Mertz Glacier tongue. There were 75 successful camera deployments and a further 7 stations where images were of poor quality but may still provide useful information. The benthic images will be examined in detail to provide information on benthic community composition and substrate type. The survey has provided a major new set of data which will greatly enhance the understanding of Antarctic marine biodiversity and the relationship between physical conditions and benthic communities.

  • This short compilation is a 3D Bathymetric flythrough starting from Exmouth to Fremantle and through the Perth Canyon. Also showing the Houtman, Mentell, Wallaby Plateau, canyons and new volcanoes. This short compilation movie will be incorporated into a PowerPoint presentation to be shown at IUGG 2011. It is in 4:3 format. The 3D flythrough footage was originally created for 08-3476 movie - South West Marine Margin, March 2010.

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.

  • This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This dataset comprises major and trace element concentrations in the upper 2 cm of seabed sediment. The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This resource comprise organic carbon and nitrogen concetrations and isotopes and specifi surface areas of the mud fraction (<63 um) of the upper 2 cm of seabed sediments . The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • Models of seabed sediment mobilisation by waves and currents over Australia's continental shelf environment are used to examine whether disturbance regimes exist in the context of the intermediate disturbance hypothesis (IDH). Our study shows that it is feasible to model the frequency and magnitude of seabed disturbance in relation to the dominant energy source (wave-dominated shelf, tide-dominated shelf or tropical cyclone dominated shelf). Areas are mapped where the recurrence interval of disturbance events is comparable to the rate of ecological succession, which meets criteria defined for a disturbance regime. We focus our attention on high-energy, patch-clearing events defined as exceeding the Shields (bed shear stress) parameter value of 0.25. Using known rates of ecological succession for different substrate types (gravel, sand, mud), predictions are made of the spatial distribution of a dimensionless ecological disturbance index (ED), given as: ED = FA (ES/RI), where ES is the ecological succession rate for different substrates, RI is the recurrence interval of disturbance events and FA is the fraction of the frame of reference (surface area) disturbed. Maps for the Australian continental shelf show small patches of ED-seafloor distributed around the continent, on both the inner and outer shelf. The patterns are different for wave-dominated (patches on the outer shelf trending parallel to the coast), tide-dominated (patches crossing the middle-shelf trending normal to the coast) and cyclone-dominated (large oval-shaped patches crossing all depths). Only a small portion of the shelf (perhaps ~10%) is characterised by a disturbance regime as defined here. To our knowledge, this is the first time such an analysis has been attempted for any continental shelf on the earth.

  • Map showing Australia's Maritime Jurisdiction off Northern Australia. This includes areas contiguous to the north of the continent and as far west as Christmas Island, but excludes areas around Cocos (Keeling) Islands and areas west of Christmas Island. One of the 27 constituent maps of the "Australia's Maritime Jurisdiction Map Series" (GeoCat 71789). Depicting Australia's extended continental shelf approved by the Commission on the Limits of the Continental Shelf in April 2008, treaties and various maritime zones. Background bathymetry image is derived from a combination of the 2009 9 arc second bathymetry and topographic grid by Geoscience Australia and a grid by W.H.F. Smith and D.T. Sandwell, 1997. Background land imagery derived from Blue Marble, NASA's Earth Observatory. 2800mm x 1050mm (for 42" plotter) sized .pdf downloadable from the web.

  • Flythrough movie showing the bathymetry, seabed habitats and biota of the outer continental shelf within the Flinders Commonwealth Marine Reserve (CMR), offshore from Flinders Island northeast Tasmania. The bathymetric image is derived from multibeam sonar collected by Geoscience Australia in 2012 using a 30 kHz Simrad EM3002 system on RV Challenger. Videos and seabed images were collected by the University of Tasmania and CSIRO as part of the same field program. Key features on the shelf bathymetry include low profile reefs, flat sandy seabed and the heads of two submarine canyons. The reefs provide hard substrate for sponge gardens whereas the sand flats are mostly barren. The two submarine canyons are sites of local upwelling, and attract large schools of Tasmanian Striped Trumpeter. The Flinders CMR is a study site for the Marine Biodiversity Research Hub, funded through the National Environmental Research Program (NERP). ..