From 1 - 10 / 22
  • Seismological data are used for a variety of purposes, from earthquake hazard zonation to mapping Earth structure and mineral resource exploration. The immense volumes of seismic data now available challenge the application of routine seismic analysis techniques using existing tools. These tools fail to take advantage of recent advances in computing hardware and data formats. Given the scale of data to process and the computational complexity of algorithms involved, a more efficient approach that scales on high-performance computing and data (HPC-HPD) platforms is needed. In addition, different agencies have tended to use bespoke and ad hoc data formats, data curation processes and quality standards, hindering large-scale analyses and modelling. High-performance seismological tools (HiPerSeis) facilitate the transformation of source seismological data into formats geared towards HPC-HPD platforms. HiPerSeis also implements optimised seismological workflows that can be run at large scale on HPC-HPD platforms. <b>Citation:</b> Hassan, R., Hejrani, B., Medlin, A., Gorbatov, A. and Zhang, F., 2020. High-performance seismological tools (HiPerSeis). In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • No abstract available

  • Airborne Electromagnetic data are being acquired by Geoscience Australia in areas considered to have potential for uranium or thorium mineralisation under the Australian Government's Onshore Energy Security Program (OESP). The surveys have been managed and interpreted by Geoscience Australia's Airborne Electromagnetic Acquisition and Interpretation project. In contrast to industry style deposit scale investigations, these surveys are designed to reveal new geological information at regional scale. The Frome Embayment AEM survey was acquired using the TEMPESTTM AEM system by Fugro Airborne Surveys under contract to GA. The survey covers a total of 32 300 line km and an area of 95 450 km2, the largest AEM survey by area ever flown in Australia. This data release contains the Phase-1 data, that is, contractor quality-controlled and quality-assessed data fas well as the Phase-2 data, that is Geoscience Australia layered earth inversion (GA-LEI) data and derived products for the Callabonna Uranium Infill Area. The data and products described in this report are available from the GA AEM website.

  • It has been widely recognised that Light Detection And Ranging (LiDAR) data is a valuable resource for estimating the geometry of natural and artificial features. While the LiDAR point cloud data can be extremely detailed and difficult to use for the recognition and extraction of three dimensional objects, the Digital Elevation Model and Digital Surface Model are useful for rapidly estimating the horizontal extent of features and the height variations across those features. This has utility in describing the characteristics of buildings or other artificial structures. LiDAR is an optical remote sensing technology that can measure the distance from the sensor to a target area by illuminating the target area with light, often using pulses from a laser scanner. LiDAR has many applications in a broad range of fields, including aiding in mapping features beneath forest canopies, creating high resolution digital elevation and surface models. A Digital Surface Model (DSM) represents the earth's surface and includes all objects on it, while the Digital Elevation Model (DEM) represents the bare ground surface without any natural or artificial objects such as vegetation, structures and buildings. The Building Geometry Model (BGM) application is a Python-based software system, used to execute ArcGIS geoprocessing routines developed by Geoscience Australia, which can derive the horizontal and vertical extents and geometry information of building and other elevated features from LiDAR data. The Building Geometry Model algorithms were developed in response to the availability of LiDAR data for the development of exposure information for natural hazard risk analysis. The LiDAR derivatives were used to estimate building footprint areas, inter-storey heights across areas occupied by buildings, and eventually an estimate of gross floor area of different types of buildings. The design and development of the BGM application started in February 2012 as part of a natural hazard risk analysis project in the Philippines. Many of the examples of interface usage in this document contain references to locations and terms used in the Philippines. However, the BGM application has been designed to process data regardless of its geographic location. The object-oriented programming techniques and design patterns were used in the software design and development. In order to provide users with a convenient interface to run the application on Microsoft® Windows, a Python-based Graphical User Interface (GUI) was implemented in March 2012 and significantly improved in the subsequent months. The application can be either run as a command-line program or start via the GUI. The original Version 1.0 of the BGM has been replaced by Version 1.1, which incorporates changes to both the geoprocessing methods and the GUI. In the geoprocessing methods for Version 1.1, the method for calculating the extent of blue roof areas has been improved, which ultimately improves the estimation of vegetation extents. In this version, the user now also has the ability to specify additional datasets that can be used to mask out features from the calculations (such as elevated structures that are not buildings). As a result of changes to the GUI in Version 1.1, the user can now: - Specify the new threshold for the blue roof values in the new Blue Roof Unmask; - Designate band numbers and colours specific to the aerial imagery being used; - Control the NDVI threshold used for determining vegetation extents from aerial imagery; - Specify one or more additional masking datasets. Minor changes to the temporary/intermediate file names have also been made. This document is a user guide to the BGM GUI. It describes the main User Interface (UI) components, functionality and procedures for running the BGM processes via GUI.

  • SIFRA is the acronym for 'System for Infrastructure Facility Resilience Analysis'. The system provides an analytical approach for modelling the vulnerability of high-value infrastructure facilities by taking into consideration the fragilities and configurations of its constituent components. In doing this it uses a network theory based approach for modelling the facility and its operations. This method makes it possible to consider the discrete component-level vulnerabilities within a facility and, significantly, their system-level operational implications to the composite facility fragility. SIFRA also includes tools for modelling system restoration times under varied levels of resource allocation scenarios, and for identifying component criticality.

  • Geoscience Australia's World Wind Viewer is an application developed using NASA's World Wind Java Software Development Kit (SDK) to display Australia's continental data sets. The viewer allows you to compare national data sets such as the radioelements, the gravity and magnetic anomalies, and other mapping layers, and show the data draped over the Australian terrain in three dimensions.

  • The Quick Attribute Calculator v.1.0 is a toolbar developed for use with ArcGIS 9.3 on Windows XP. It enables a user to select an attribute from a drop-down list and change the value of a sub-set for bulk updates.

  • Python Source Code for geophys_utils utilities for accessing netCDF encoded geophysics data

  • SUNAZ is a set of computer programs comprising SUNAZ and SUNIN to calculate azimuth-by-hour-angle observations of the Sun to determine true north azimuth to an azimuth mark based on the observing proforma described in K.A. Weinert (1980), Notes on Geomagnetic Observatory and Survey Practice, Earth Science 5, UNESCO, paragraph 246, page 36, using the algorithm described in G.G.Bennett (1980), "A Solar Ephemeris for use with Programmable Calculators", The Australian Surveyor, Vol.30, No.3, pp 147-151.

  • Natural hazards have an impact on every Australian State and Territory. These hazards include bushfires, cyclones, earthquakes, floods, landslides, severe weather, tsunami and volcanoes. These phenomena threaten lives and damage private and public assets, as well as disrupt water, power, transport and communication services. These hazards and their associated impacts also can seriously affect employment, public administration and incomes to industry, agriculture and commerce.