From 1 - 10 / 1417
  • Critical review of basin-related uranium mineral systems in Australia

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). This radiometric uranium image has a cell size of 0.0004 degrees (approximately 41m) and shows uranium element concentration of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 in units of parts per million (or ppm). Noise-adjusted singular value decomposition (NASVD) has been applied to the data. NASVD is a spectral component analysis procedure for the removal of noise from gamma-ray spectra. The data used to produce this image was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • The greater Eromanga Basin is an intracratonic Mesozoic basin covering an area of approximately 2,000,000 km2 in central and eastern Australia. The greater Eromanga Basin encompasses three correlated basins: the Eromanga Basin (central and western regions), Surat Basin (eastern region) and the Carpentaria Basin (northern region). The greater Eromanga Basin hosts Australia's largest known resources of groundwater as well as major onshore hydrocarbon resources, including significant coal bed methane (CBM) that has been discovered in recent years, and also contains extensive hot-sedimentary aquifer geothermal energy systems. Additionally, the basin has potential as a greenhouse gas sequestration site and will likely play a key role in securing Australia's energy future. Finally, although no major metallic mineral deposits are currently known in the greater Eromanga Basin, there is significant potential for undiscovered uranium mineralisation. A 3D geological map has been constructed for the greater Eromanga Basin using publicly available datasets. These are principally drilling datasets (i.e. water bores; mineral and petroleum exploration wells) and the 1:1,000,000 scale Surface Geology Map of Australia. Geophysical wireline logs, hydrochemistry, radiometrics, magnetic and gravity datasets were also integrated into the 3D geological map. This study has highlighted the potential of the southwest margin of the Eromanga Basin and the Euroka arch region to contain sandstone-hosted uranium mineral systems. The report demonstrates how incorporating disparate datasets in a 3D geological map can generate an integrated mapping solution with diverse applications: 1. Provide new insights into the geology and geodynamic evolution of the basin. 2. Identify hydrocarbon resource plays. 3. Assess the basin's mineral potential (e.g., sandstone-hosted uranium mineral systems). 4. Assess the basin's geothermal potential (e.g., hot-sedimentary aquifer geothermal systems). 5. Provide resource management information (e.g., groundwater). 6. Identify potential contaminants in groundwater.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.0005 degrees (approximately 50m) and shows uranium element concentration of the Southeast Lachlan, NSW, 2010 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2010 by the NSW Government, and consisted of 108251 line-kilometres of data at a line spacing between 250m and 500m, and 60m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Southeast Lachlan, NSW, 2010 (P1218), radiometric line data, AWAGS levelled were acquired in 2010 by the NSW Government, and consisted of 108251 line-kilometres of data at a line spacing between 250m and 500m, and 60m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00042 degrees (approximately 43m) and shows uranium element concentration of the Loongana, WA, 2010 (Eucla Basin 2) in units of parts per million (or ppm). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 114979 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Eucla Basin 4 Madura Doserate Grid Geodetic has a cell size of 0.00042 degrees (approximately 43m) and shows the terrestrial dose rate of the Madura, WA, 2010 (Eucla Basin 4). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 103672 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00042 degrees (approximately 43m) and shows uranium element concentration of the Madura, WA, 2010 (Eucla Basin 4) in units of parts per million (or ppm). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 103672 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Eucla Basin 5 North Forrest Doserate grid geodetic has a cell size of 0.00042 degrees (approximately 43m) and shows the terrestrial dose rate of the Forrest, WA, 2010 (Eucla Basin 5N). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 73785 line-kilometres of data at 200m line spacing and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00042 degrees (approximately 43m) and shows uranium element concentration of the Forrest, WA, 2010 (Eucla Basin 5N) in units of parts per million (or ppm). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 73785 line-kilometres of data at 200m line spacing and 50m terrain clearance.