uranium
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.0005 degrees (approximately 50m) and shows uranium element concentration of the Merredin-Bruce Rock, WA, 1997 survey. The data used to produce this grid was acquired in 1997 by the WA Government, and consisted of UNKNOWN line-kilometres of data at 150m line spacing and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.001 degrees (approximately 100m) and shows uranium element concentration of the SA Exploration Initiative - Area B, (B1- B4) SA, 1993 survey. The data used to produce this grid was acquired in 1993 by the SA Government, and consisted of 74735 line-kilometres of data at 400m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.0005 degrees (approximately 50m) and shows uranium element concentration of the NSW DMR, Discovery 2000, 1994-95, AREA E, Northern Parkes survey. The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 122000 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.000497 degrees (approximately 50m) and shows uranium element concentration of the Casterton, Vic, 1983 (GSV0238) survey. The data used to produce this grid was acquired in 1983 by the VIC Government, and consisted of 3500 line-kilometres of data at 250m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.001 degrees (approximately 100m) and shows uranium element concentration of the SA Exploration Initiative 1994 - Area A10 (Ammaroodinna) survey. The data used to produce this grid was acquired in 1994 by the SA Government, and consisted of 12166 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.000417 degrees (approximately 40m) and shows uranium element concentration of the North Central Tasmania, Tas, 1999 survey. The data used to produce this grid was acquired in 1999 by the TAS Government, and consisted of 39404 line-kilometres of data at 200m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.000521 degrees (approximately 50m) and shows uranium element concentration of the Cootamundra, NSW, 1997/98 survey. The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 69086 line-kilometres of data at 250m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.000417 degrees (approximately 40m) and shows uranium element concentration of the Sandstone (Woodley, Sandstone), WA, 1996 survey. The data used to produce this grid was acquired in 1996 by the WA Government, and consisted of UNKNOWN line-kilometres of data at 200m line spacing and 40m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.000833 degrees (approximately 90m) and shows uranium element concentration of the Ashburton, WA, 2006 survey. The data used to produce this grid was acquired in 2006 by the WA Government, and consisted of 106150 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.001 degrees (approximately 100m) and shows uranium element concentration of the SA Exploration Initiative - Area B, (B1- B4) SA, 1993 survey. The data used to produce this grid was acquired in 1993 by the SA Government, and consisted of 74735 line-kilometres of data at 400m line spacing and 80m terrain clearance.