potassium
Type of resources
Keywords
Publication year
Service types
Topics
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This Julia Creek dose rate grid geodeticg has a cell size of 0.00083 degrees (approximately 90m) and shows the terrestrial dose rate of the Julia Creek, QLD, 1999. The data used to produce this grid was acquired in 1999 by the QLD Government, and consisted of 49397 line-kilometres of data at 400m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The total dose rate is due to natural sources of radiation and is computed by adding estimates of cosmic dose at ground level to the terrestrial dose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered total dose rate grid. This Gawler Craton Airborne Survey Merge Radiometrics - dose rate grid (AWAGS) has a cell size of 0.0004 degrees (approximately 41m) and shows the total dose rate of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 survey. The data used to produce this grid was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSNSW Exploration NSW Area X Inverell dose rate grid geodetic has a cell size of 0.00048 degrees (approximately 50m) and shows the terrestrial dose rate of the NSW DMR, Discovery 2000, Area X, Inverell, NSW. The data used to produce this grid was acquired in 2002 by the NSW Government, and consisted of 29054 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This NSW DMR, Discovery 2000, Area X, Inverell, NSW (P1038), radiometric line data, AWAGS levelled were acquired in 2002 by the NSW Government, and consisted of 29054 line-kilometres of data at 250m line spacing and 60m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Nyabing (Detailed East), WA, 2002 (P1044), radiometric line data, AWAGS levelled were acquired in 2002 by the WA Government, and consisted of 11589 line-kilometres of data at 100m line spacing and 50m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Nyabing (Detailed West), WA, 2002 (P1044), radiometric line data, AWAGS levelled were acquired in 2002 by the WA Government, and consisted of 11589 line-kilometres of data at 100m line spacing and 50m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
This GSWA Southern Cross potassium grid geodetic is an airborne-derived radiometric potassium window countrate grid for the Southern Cross, WA, 1995-96 (Fugro) survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Southern Cross potassium grid geodetic radiometric potassium window countrate grid has a cell size of 0.0005 degrees (approximately 51m). The data are in units of counts per second (cps). The data used to produce this grid was acquired in 1995 by the WA Government, and consisted of 42693 line-kilometres of data at 100m line spacing and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Oaklands Basin, NSW, 2002 (Area W) (P1028), radiometric line data, AWAGS levelled were acquired in 2002 by the NSW Government, and consisted of 54352 line-kilometres of data at 400m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This MIM Mt Isa Inlier totalcount grid geodetic has a cell size of 0.00042 degrees (approximately 45m) and shows the terrestrial dose rate of the MIM Data from Mt Isa Inlier, QLD. The data used to produce this grid was acquired in 1990 by the QLD Government, and consisted of 676318 line-kilometres of data at a line spacing between 200m and 400m, and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00042 degrees (approximately 45m) and shows potassium element concentration of the MIM Data from Mt Isa Inlier, QLD in units of percent (or %). The data used to produce this grid was acquired in 1990 by the QLD Government, and consisted of 676318 line-kilometres of data at a line spacing between 200m and 400m, and 80m terrain clearance.