From 1 - 10 / 3415
  • Initial lead isotope ratios from Archean volcanic-hosted massive sulfide (VHMS) and lode gold deposits and neodymium isotope model ages from igneous rocks from the geological provinces that host these deposits identify systematic spatial and temporal patterns, both within and between the provinces. The Abitibi-Wawa Subprovince of the Superior Province is characterized by highly juvenile lead and neodymium. Most other Archean provinces, however, are characterized by more evolved isotopes, although domains within them can be characterized by juvenile isotope ratios. Metal endowment (measured as the quantity of metal contained in geological resources per unit surface area) of VHMS and komatiite-associated nickel sulfide (KANS) deposits is related to the isotopic character, and therefore the tectonic history, of provinces that host these deposits. Provinces with extensive juvenile crust have significantly higher endowment of VHMS deposits, possibly as a consequence of higher heat flow and extension-related faults. Provinces with evolved crust have higher endowment of KANS deposits, possibly because such crust provided either a source of sulfur or a stable substrate for komatiite emplacement. In any case, initial radiogenic isotope ratios can be useful in predicting the endowment of Archean terranes for VHMS and KANS deposits. Limited data suggest similar relationships may hold in younger terranes.

  • This document describes a format of the PRISM (Panchromatic Remote sensing Instrument for Stereo Mapping ) products generated by the ALOS data processing subsystem.

  • Australia's Large Igneous Provinces (LIPs) span most of Earth's geological history, ranging from Early Archean to Recent. LIPs in continental Australia are represented by continental flood basalts, fragments of oceanic plateaux, layered mafic-ultramafic intrusions, sill complexes and dyke swarms. It is only in the last decade that geologists have started to focus on LIPs in Australia, mainly from the perspective of their mineral potential, particularly after the discovery of the Nebo-Babel Ni-Cu-PGE deposit in the West Musgrave Province, central Australia. The list of LIPs increased by including other well-known igneous provinces, such as the Fortescue, Warakurna, Hart-Carson, Kalkarindji (formerly known as Antrim Plateau Volcanics) and various dyke swarms (e.g., Widgiemooltha, Marnda Moorn, Gairdner). The Bunbury Basalt, although only covering a small area in the Cape Naturaliste-Cape Leeuwin peninsula, joined the list of LIPs, due to its age links with the huge Kerguelen oceanic plateau magmatism. As indicated by the world-class Nebo-Babel deposit and further discoveries in the West Musgrave and in the Kimberley region, the mineral potential of LIPs is very high. In the case of orthomagmatic mineral systems, the selection of areas or specific intrusions requires focusing on isotope systematics and trace- and major-element geochemical trends to filter out mafic-ultramafic intrusions that may not have undergone sulphur saturation from those that have experienced sulphur saturation from processes, such as crustal contamination. In eastern Australia, there are two major volcanic provinces: the Early Cretaceous Whitsunday volcanic province, which is a good example of a silicic LIP, and a 4400 km long belt characterised by recent (youngest volcano is 4600 years ago) intraplate alkaline volcanism. The mineral potential associated with these provinces is as yet not fully assessed.

  • The product SAR.GTC is a digital image generated from raw SAR data takes using up-tp-date auxiliary parameters, with the best available instrumental corrections applied, precisely located, corrected for terrain varieations and rectified onto a map projection. The ESA SAR.GTC format is based on the general definition of the SAR CEOS format (ref. ER-IS-EPO-GS-5902).

  • The product SAR.SLC is a single look complex digital image generated from raw SAR data using up-to-date auxiliary parameters. The image, projected on sland range, referred to as 'quarter scene' or quadrant corresponds to approximately one half (range) by one half (azimuth) of a full scence image. The ESA SAR.SLC format is based on the general definition of the SAR CEOS format (ref. ER-IS-EPS-GS-5902).

  • The product SAR.GEC is a digital image generated from raw SAR data takes using up-to-date auxiliary parameters, with the best available instrumental corrections applied, precisely located and rectified onto a map projection. The JERS SAR.GEC format is based on the general definition of the SAR CEOS format (ref. ER-IS-EPO-GS-5902).

  • The product SAR.GEC is a digital image generated from raw SAR data takes using up-to-date auxiliary parameters, with the best available instrumental corrections applied, precisely located and rectified onto a map projection. The JERS SAR.GEC format is based on the general definition of the SAR CEOS format (ref. ER-IS-EPS-GS-5902).

  • Extensive benefits and tools can be gained for mineral explorers, land-users and government and university researchers using new spectral data and processing techniques. Improved methods were produced as part of a large multi-agency project focusing on the world-class Mt Isa mineral province in Australia. New approaches for ASTER calibration using high-resolution HyMap imagery through to testing for compensation for atmospheric residuals, lichen and other vegetation cover effects have been included in this study. . Specialised data processing software capable of calibrating and processing terabytes of multi-scene imagery and a new approach to delivery of products, were developed to improve non-specialist user interpretation and comparison with other datasets within a GIS. Developments in processing and detailed reporting of methodology, accuracies and applications can make spectral data a more functional and valuable tool for users of remote sensing data. A highly-calibrated approach to data processing, using PIMA ground samples to validate the HyMap, and then calibrating the ASTER data with the HyMap, allows products to have more detailed reliable accuracies and integration with other data, such as geophysical and regolith information in a GIS package, means new assessments and interpretations can be made in mapping and characterising materials at the surface. Previously undiscovered or masked surface expression of underlying materials, such as ore-deposits, can also be identified using these methods. Maps and products made for this project, covering some ~150 ASTER scenes and over 200 HyMap flight-lines, provide a ready-to-use tool that aids explorers in identifying and mapping unconsolidated regolith material and underlying bedrock and alteration mineralogy.

  • This document defines the Computer Compatible Tape (CCT) format for raw, quicklook, bulk-corrected (georeferenced) system-corrected and precision processed Landsat Thematic Mapper (TM) imagery data acquired from the Landsat 4, Landsat 5 and subsequent satellites.

  • This document is the Data Format Control Book (DFCB) for the Landsat 7 (L7) Enhanced Thematic Mapper Plus (EMT+) Level Zero-R Distribution Product (LORp). It focuses on the Hierarchical Data Format (HDF) of the Landsat 7 L0R product available from the Centre for Earth Resources Observation and Science (EROS) Landsat Archive Manager (LAM).