From 1 - 10 / 35
  • This service has been created specifically for display in the National Map and the chosen symbology may not suit other mapping applications. The Australian Topographic web map service is seamless national dataset coverage for the whole of Australia. These data are best suited to graphical applications. These data may vary greatly in quality depending on the method of capture and digitising specifications in place at the time of capture. The web map service portrays detailed graphic representation of features that appear on the Earth's surface. These features include the administration boundaries from the Geoscience Australia 250K Topographic Data, including state forest and reserves.

  • A complication of papers and report to support of MArien planning areas. The CD will be give to delegates from The Department of Environment and Heritage. Reports and paers included are: Geoscience Australia Record 2006/11, Record 2002/26, Record 2005/08, Record 2005/05, Record 2003/30, Record 2004/11, Record 2004/23, Record 2006/11, Beaman, R.J., Harris, P.T., Geophysical variables as predictors of megabenthos assemblages from the northern Great Barrier Reef, Australia; Post, A.L., Wassenberg, T.J., Passlow, V., Physical surrogates for macrofaunal distributions and abundance in a tropical gulf; Hemer, M.A., Harris, P.T., Coleman, R., Hunter, J., Sediment mobility due to currents and waves in the Torres Strait Gulf of Papua region. Harris, P.T., Heap, A.D., Passlow, V., Hughes, M., Daniell, J, Hemer, M., Anderson, O., Tidally incised valleys on tropical carbonate shelves: An example from the northern Great Barrier Reef, Australia. Harris, P.T., Heap, A.D., Wassenberg T.J., Passlow, V., Submerged coral reefs in the Gulf of Carpentaria, Australia. Glenn, K., Water Properties of Ashmore Reef, North-West Shelf, Australia Beaman, R.J., Daniell, J., Harris, P.T., Geology benthos relationships on a temperate, rocky bank, eastern Bass Strait, Australia.

  • Conservation planning requires spatial information on biodiversity within a region of interest and its patterns of association with physical environmental features. Such information, however, is often unavailable, and spatial planning is reliant upon proxies based on assumed relationships between species and environmental features have been used as the basis of spatial planning. Here we evaluate the effectiveness of a set of key ecological features (KEF) used in the design of Australia's network of Commonwealth Marine Reserves for representing key marine macrobenthos in a large and biodiverse but data-sparse region in the Oceanic Shoals Commonwealth Marine Reserve (CMR), Timor Sea. Predictive spatial models of the distributions of four key habitat-forming macrobenthic taxa including hard corals, soft corals, gorgonians and sponges, were built using 10 geophysical variables and Boosted Regression Trees. We identified the extent to which KEFs captured the distributions of each taxon, and whether models derived from the western region of the CMR could predict well the distribution of the same taxon in the eastern CMR. All four taxa showed similar habitat preferences, occurring on the tops of raised geomorphic features with hard substrata and while absent from deeper habitats with soft substrata. However, high variability in the biodiversity observed among similar features indicated that factors other than geomorphology alone influence spatial patterns in the distribution of macrobenthos in the region. Overall, models derived from the western region performed reasonably well predicting distribution patterns in eastern region. Transferability of models among sites increased with greater model precision accuracy (higher deviance explained), and all models predicted taxon absence better than presence.

  • This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This datset comprises chlorophyll a, b and c and phaeophytin a concentrations from the upper 2 cm of seabed sediments. The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises chlorophyll a,b, and c, and phaeophytin a concentrations in the upper 2cm of seafloor sediments. Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press

  • This resource contains geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). This dataset comprises total sediment metabolism (dissolved inorganic carbon production) measurments and DIC pools in the upper 2 cm of the seabed. The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38 (Nichol et al. 2013): Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • Lord Howe Island in the southwest Pacific Ocean is surrounded by a shallow (20 - 120 m) sub-tropical carbonate shelf 24 km wide and 36 km long. On the mid shelf a relict coral reef (165 km2) extends around the island in water depths of 30 - 40 m. The relict reef comprises sand sheet, macroalgae and hardground habitats. Inshore of the relict reef a sandy basin (mean depth 45 m) has thick sand deposits. Offshore of the relict reef is a relatively flat outer shelf (mean depth 60 m) with bedrock exposures and sandy habitat. Infauna species abundance and richness were similar for sediment samples collected on the outer shelf and relict reef, while samples from the basin had significantly lower infauna abundance and richness. The irregular shelf morphology appears to determine the distribution and character of sandy substrates and local oceanographic conditions, which in turn influence the distribution of different types of infauna communities.

  • ESRI Grids of available bathymetry within the bounds of proposed Marine Protected Areas in the Antarctic. Interpolated datasets are also included.

  • The Lord Howe Island survey SS06-2008 in April 2008 aboard the RV Southern Surveyor was a collaboration between the University of Wollongong and Geoscience Australia. The survey was also an activity of the Commonwealth Environment Research Facilities' (CERF) Marine Biodiversity Hub, of which Geoscience Australia is a partner, and will contribute to the revised Plan of Management for the Lord Howe Marine Parks. The objectives of the survey were to map the morphology and benthic environments of the shallow shelf that surrounds Lord Howe Island as well as the deeper flanks of this largely submarine volcano. Of particular interest was the apparent drowned reef structure on the shelf and the spatial distribution of seabed habitats and infauna. The data collected are required to better understand the history of reef growth at Lord Howe Island, which sits at the southernmost limit of reef formation, and links between the physical environment and ecological processes that control the spatial distribution of biodiversity on the shelf. The morphology of the flanks of the submarine volcano was also examined to reveal whether they provide evidence of major erosional and depositional processes acting on the volcano. This report provides a description of the survey activities and the results of the processing and initial analysis of the data and samples collected.

  • The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises four P pools in the upper 2 cm of the fine fraction (<63 um) of seabed sediments:adsorbed/oxide-associated-P; authigenic-P; detrital-P and organic-P. Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press