geochronology
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Legacy product - no abstract available
-
Detrital zircon from sandstone bodies intersected in three recent exploration wells on the North West Shelf were analysed and dated using the SHRIMP (Sensitive High Resolution Ion Microprobe) at Geoscience Australia to test the technique as a tool for understanding the provenance and sediment transport pathways of reservoir facies in the region. Chevron, Hess and Santos, the operating companies for exploration permits WA- 365-P, WA-390-P and WA-281-P respectively, collected 3-5 kg of cuttings from the wells Guardian-1 and Hijinx-1 (Triassic Mungaroo Formation on the Exmouth Plateau of the Carnarvon Basin) and Burnside-1 (Jurassic Brewster Sands from the Browse Basin). All three wells were drilled in 2009-2010. Samples were prepared at Geoscience Australia with 70-80 zircon grains randomly selected for analysis following standard data acquisition and processing procedures to provide a statistically meaningful representation of detrital ages in each sample.
-
Aspects of the tectonic event history of Palaeo- to Mesoproterozoic Australia are recorded by metasedimentary basins in the Mt Isa, Etheridge, and Coen Provinces in northern Australia and in the Curnamona Province of southern Australia. Based on similarities in depositional ages and stratigrapy, these basins are interpreted to have been deposited in a tectonically-linked basin system. However, in deformed and metamorphosed basins, field correlations are difficult, making independent data, such as Nd isotope data and detrital zircon U-Pb geochronology essential to discriminate tectonic setting and sediment provenance.
-
This volume incorporates the Abstracts of papers presented at the BHEI annual meeting, May 2000.
-
Palaeoproterozoic magmatic rocks from the Mary Kathleen Fold Belt of the Mount Isa Inlier record different magmatic textures and variations in tectonic strain associated with extension and the development of crustal-scale detachment zones. New SHRIMP U-Pb zircon geochronology for magmatic rocks, combined with field relationships, refine the duration of this extension to between 1780 and 1740 Ma. The initial stages of this tectono-magmatic event are co-incident with mafic magmatism, basin formation and rapid sedimentation of the ~1780-1765 Ma Myally Supersequence of the Leichhardt Superbasin in the adjacent Leichhardt River Fault Trough. The Ballara Quartzite and Corella Formation represent a period of sag phase sedimentation during the later part this event, and facies models, sequence stratigraphic interpretations and detrital zircon geochronology data confirm the time equivalence of these units to the Quilalar Supersequence of the Leichhardt River Fault Trough. These correlations permit the Eastern and Western Successions of the Mount Isa Inlier to be correlated at this time. Locally, the Corella Formation is intruded by 1740 Ma granites, suggesting that at least the lower parts of this package were deposited during the 1780-1740 Ma extensional event. By linking deep crustal extension processes in the Mary Kathleen area with near-surface basin formation in the adjacent Leichhardt River Fault Trough, it is possible to develop crustal-scale architecture models which provide insights into the development and migration of ore-bearing fluids.
-
Legacy product - no abstract available
-
This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP) for thirty-five samples of plutonic rocks from the New England Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2012-2014.
-
No abstract available
-
Poorly exposed Paleoproterozoic sandstones and siltstones of the Killi Killi Formation record developement of a large turbidite complex. Killi Killi Formation sediments were eroded from the uplifted ~1860 Ma Nimbuwah and Hooper Orogens as indicated by detrital zircons with sediment deposition at ~1840 Ma. Facies analysis, isopach maps and detrital zircon populations, combined with Sm-Nd data from the Tanami region and Halls Creek Orogen, confirm the previously suggested correlation of the Paleoproterozoic successions in the Eastern zone of the Halls Creek Orogen and the Tanami region. Detrital zircons from the Aileron Province suggest the turbidite complex extends into the Arunta region, however, high metamorphic grade precludes direct facies comparisons in the Arunta region. Portions of the turbidite complex in the Tanami region are dominated by mudstones, consisting of low-density turbidites and associated hemipelagites, that potentially acted as a redox boundary to gold-bearing fluid. Gold prospectivity in turbiditic systems is increased within these mudstone sequences with the potential for further gold discoveries.
-
The North Australia Project (NAP) was initiated in July 2000 following negotiations between the Northern Territory Geological Survey (NTGS) and the Australian Geological Survey Organisation (now Geoscience Australia). The NAP was a joint project undertaking geoscientific studies in the Tanami, Arunta and Tennant regions of central Australia to help encourage mineral exploration. The project continued until June 2004, when the Geological Survey of Western Australia (GSWA) began regional data acquisition in the western Tanami region. In July 2004, the Tanami Project, a joint initiative between Geoscience Australia, NTGS, and GSWA to increase mineral exploration replaced the NAP. Although NTGS and GSWA have continued interests in the Tanami and Arunta regions, the collaborative Tanami Project will finish in December 2006. The purpose of this product is to provide reports and datasets summarising the results of the project at this time. The only major products not included in this DVD are the results of the Tanami seismic survey and modifications to the on-line 3D models required by the seismic results. These will be released separately, beginning in August 2006. As this report is intended to be as up-to-date as possible, it refers to a number of manuscripts that are either in press or in preparation. Although these manuscripts cannot be provided here, much of the data upon which the conclusions are based are presented in summary, either in abstracts, presentations, or data tables.