From 1 - 10 / 20191
  • The Brattstrand Paragneiss, a highly deformed Neoproterozoic granulite-facies metasedimentary sequence, is cut by three generations of ~500 Ma pegmatite. The earliest recognizable pegmatite generation, synchronous with D2-3, forms irregular pods and veins up to a meter thick, which are either roughly concordant or crosscut S2 and S3 fabrics and are locally folded. Pegmatites of the second generation, D4, form planar, discordant veins up to 20-30 cm thick, whereas the youngest generation, post-D4, form discordant veins and pods. The D2-3 and D4 pegmatites are abyssal class (BBe subclass) characterized by tourmaline + quartz intergrowths and boralsilite (Al16B6Si2O37); the borosilicates prismatine, grandidierite, werdingite and dumortierite are locally present. In contrast, post-D4 pegmatites host tourmaline (no symplectite), beryl and primary muscovite and are assigned to the beryl subclass of the rare-element class. Spatial correlations between B-bearing pegmatites and B-rich units in the host Brattstrand Paragneiss are strongest for the D2-3 pegmatites and weakest for the post-D4 pegmatites, suggesting that D2-3 pegmatites may be closer to their source. Initial 87Sr/86Sr (at 500 Ma) is high and variable (0.7479-0.7870), while -Nd500 tends to be least evolved in the D2-3 pegmatites (-8.1 to -10.7) and most evolved in the post-D4 pegmatites (-11.8 to -13.0). Initial 206Pb/204Pb and 207Pb/204Pb and 208Pb/204Pb ratios, measured in acid-leached alkali feldspar separates with low U/Pb and Th/Pb ratios, vary considerably (17.71-19.97, 15.67-15.91, 38.63-42.84), forming broadly linear arrays well above global Pb growth curves. The D2-3 pegmatites contain the most radiogenic Pb while the post-D4 pegmatites have the least radiogenic Pb; data for D4 pegmatites overlap with both groups. Broad positive correlations for Pb and Nd isotope ratios could reflect source rock compositions controlled two components. Component 1 (206Pb/204Pb-20, 208Pb/204-43, Nd -8) most likely represents old upper crust with high U/Pb and very high Th/Pb. Component 2 (206Pb/204Pb -18, 208Pb/204Pb~38.5, -Nd500 -12 to -14) has a distinctive high-207Pb/206Pb signature which evolved through dramatic lowering of U/Pb in crustal protoliths during the Neoproterozoic granulite-facies metamorphism. Component 1, represented in the locally-derived D2-3 pegmatites, could reside within the Brattstrand Paragneiss, which contains detrital zircons up to 2.1 Ga old and has a wide range of U/Pb and Th/Pb ratios. The Pb isotope signature of component 2, represented in the 'far-from-source' post-D4 pegmatites, resembles feldspar Pb isotope ratios in Cambrian granites intrusive into the Brattstrand Paragneiss. However, given their much higher 87Sr/86Sr, the post-D4 pegmatite melts are unlikely to be direct magmatic differentiates of the granites, although they may have broadly similar crustal sources. Correlation of structural timing with isotopic signatures, with a general sense of deeper sources in the younger pegmatite generations, may reflect cooling of the crust after Cambrian metamorphism.

  • Geoscience Australia Flyer prepared for LOCATE14.

  • Studies utilising high-resolution multibeam swath bathymetry datasets to understand the glacial evolution of the previously glaciated Antarctic continental margin are limited, and are particularly meagre for the East Antarctic Continental shelf. Here we present an interpretation of the seafloor geomorphology based on a new swath bathymetry dataset from the shallow-water marine environment of the Windmill Islands, adjacent to the Australian Antarctic research station, Casey. This high resolution (1 m) dataset permits visualisation of geomorphological features preserved on the seafloor in unparalleled detail. The seafloor is dominated by an assemblage of bedrock, glacial and post-glacial features, providing new insight into the behaviour of the ice-sheet in the region during past glacial episodes and its subsequent retreat to present-day conditions. Interpretation of the submarine geomorphology reveals five dominant features: (1) basement fault systems and bedrock `highs (2) meltwater channels, (3) streamlined sub-glacial landforms, (4) moraine ridges and (5) isolated basins and depressions. Distinctive NW-SE trending channels and linear features that represent brittle bedrock fault systems are clearly evident. These sub-parallel basement bedrock faults or joints have been preferentially eroded and widened by glacial action to form narrow channels and preserve typical `U-shaped profiles. A secondary set of SW to WSW trending linear features are characterised by broad eroded channels. The general orientation of the coastline and channels in the region suggest that these linear features fundamentally control the regional coastal and seafloor geomorphology. Regions of bedrock highs, comprised of submarine outcrops of crystalline metamorphic basement, are characterised by complex, rugged and variable topography, forming steep knolls, small shoals and reefs. Numerous channel networks have been incised into crystalline bedrock highs and their meandering nature, orientation and geometry are consistent with meltwater channels formed by subglacial hydrological flow under considerable hydrostatic pressure. They likely formed during a period when the ice-sheet was expanded and grounded over the areas of offshore crystalline bedrock, possibly during the late Pleistocene Glacial Maximum (LGM) or earlier glaciations. Glacial lineations characterised by subdued sub-parallel linear ridges are preserved in basins and appear to have formed from moulding of unconsolidated sediments by overriding ice. The orientation of the lineations are consistent with formation during westward expansion of the Law Dome ice-sheet onto the continental shelf during the LGM. Regular and closely-spaced arcuate moraine ridge sets are preserved mostly within the prominent NW-trending U-shaped channels. These features appear to be a sequence of recessional moraines or push moraine banks recording slow or episodic retreat of channelized valley glaciers or outlet ice-streams which appear strongly controlled by the local bathymetry. There are several enclosed basins and shallow depressions between bedrock highs with varying degrees of post-glacial sedimentary infill. There is little evidence of reworking of sediments by currents and as a result, the glacial features in this dataset are well preserved. Interpretation of submarine glacial landforms using high-resolution swath bathymetry, integrated with existing information of local ice-sheet evolution from terrestrial studies, allows us to enhance our understanding of the ice-sheet dynamics in the Windmill Islands region.

  • The Clarence-Moreton and the Surat basins in Queensland and northern New South Wales contain the coal-bearing sedimentary sequences of the Jurassic Walloon Coal Measures, composed of up to approximately 600 m of mudstone, siltstone, sandstone and coal. In recent years, the intensification of exploration for coal seam gas (CSG) resources within both basins has led to concerns that the depressurisation associated with future resource development may cause adverse impacts on water resources in adjacent aquifers. In order to identify the most suitable tracers to study groundwater recharge and flow patterns within the Walloon Coal Measures and their degree of connectivity with over- or underlying formations, samples were collected from the Walloon Coal Measures and adjacent aquifers in the northern Clarence-Moreton Basin and eastern Surat Basin, and analysed for a wide range of hydrochemical and isotopic parameters. Parameters that were analysed include major ion chemistry, -13C-DIC, -18O, 87Sr/86Sr, Rare Earth Elements (REE), 14C, -2H and -13C of CH4 as well as concentrations of dissolved gases (including methane). Dissolved methane concentrations range from below the reporting limit (10 µg/L) to approximately 50 mg/L in groundwaters of the Walloon Coal Measures. However, the high degree of spatial variability of methane concentrations highlights the general complexity of recharge and groundwater flow processes, especially in the Laidley Sub-Basin of the Clarence-Moreton Basin, where numerous volcanic cones penetrate the Walloon Coal Measures and may form pathways for preferential recharge to the Walloon Coal Measures. Interestingly, dissolved methane was also measured in other sedimentary bedrock units and in alluvial aquifers in areas where no previous CSG exploration or development has occurred, highlighting the natural presence of methane in different aquifers. Radiocarbon ages of Walloon Coal Measure groundwaters are also highly variable, ranging from approximately 2000 yrs BP to >40000 yrs BP. While groundwaters sampled in close proximity to the east and west of the Great Dividing Range are mostly young, suggesting that recharge to the Walloon Coal Measures through the basalts of the Great Dividing Range occurs here, there are otherwise no clearly discernable spatial patterns and no strong correlations with depth or distance along inferred flow paths in the Clarence-Moreton Basin. In contrast to this strong spatial variability of methane concentrations and groundwater ages, REE and 87Sr/86Sr isotope ratios of Walloon Coal Measures groundwaters appear to be very uniform and clearly distinct from groundwaters contained in other bedrock units. This difference is attributed to the different source material of the Walloon Coal Measures (mostly basalts in comparison to other bedrock units which are mostly composed of mineralogical more variable Paleozoic basement rocks of the New England Orogen). This study suggests that REE and 87Sr/86Sr ratios may be a suitable tracer to study hydraulic connectivity of the Walloon Coal Measures with over- or underlying aquifers. In addition, this study also highlights the need to conduct detailed water chemistry and isotope baseline studies prior to the development of coal seam gas resources in order to differentiate between natural background values of methane and potential impacts of coal seam gas development.

  • No abstract available

  • No abstract available