geological storage
Type of resources
Keywords
Publication year
Scale
Topics
-
The Collaborative Research Centre for Greenhouse Gas Technologies (CO2CRC) Program 3.2 Risk Assessment is working toward a risk assessment procedure that integrates risk across the complete CCS system and can be used to meet the needs of a range of stakeholders. Any particular CCS project will hold the interest of multiple stakeholders who will have varied interests in the type of information and in the level of detail they require. It is unlikely that any single risk assessment tool will be able to provide the full range of outputs required to meet the needs of regulators, the general public and project managers; however, in many cases the data and structure behind the outputs will be the same. In using a suite of tools, a well designed procedure will optimize the interaction between the scientists, engineers and other experts contributing to the assessment and will allow for the required information to be presented in a manner appropriate for each stakeholder. Discussions of risk in CCS, even amongst the risk assessment community, often become confused because of the differing emphases on what the risks of interest are. A key question that must be addressed is: 'What questions is the risk analysis trying to answer?' Ultimately, this comes down to the stakeholders, whose interests can be broken into four target questions: - Which part of the capture-transport-storage CCS system? - Which timeline? (project planning, project lifespan, post closure, 1,000 years, etc) - Which risk aspect? (technical, regulatory, economic, public acceptance, or heath safety and environment) - Which risk metric? (Dollars, CO2 lost, dollars/tonne CO2 avoided, etc.) Once the responses to these questions are understood a procedure and suite of tools can be selected that adequately addresses the questions. The key components of the CO2CRC procedure we describe here are: etc
-
Atmospheric monitoring of CO2 geological storage has developed from a concept to reality over less than a decade. Measurements of atmospheric composition and surface to air fluxes are now being made at onshore test sites, pilot projects, operational projects and likely future storage regions around the world. The motivation for atmospheric monitoring is usually to detect potential leakage from CO2 storage activities that might affect health and safety or to test the efficacy of carbon capture and storage (CCS) as a climate mitigation option. We have focused on the mitigation requirement, which involves determining whether potential leakage is below a maximum acceptable rate. Climatic considerations suggest that the maximum leakage rate of stored CO2 should be very small, of the order of 0.01% of that stored per year, globally averaged. Monitoring operational CO2 storage sites to confirm that potential leakage to the atmosphere is below this rate and to locate and quantify the any leakage flux can be a challenge, mainly because of the large and variable CO2 concentrations and fluxes in ecosystems and urban environments. We have developed and assessed atmospheric techniques during field experiments, during 4 years of monitoring the CO2CRC Otway Project, and by using model simulations. From this experience we are able to make recommendations about suitable technologies and strategies to optimise the capability of atmospheric monitoring of CCS in different environments. Abstract for paper to be presented at CO2CRC Research Symposium 2010, 1-3 December 2010, Melbourne
-
As part of the National CO2 Infrastructure Plan (NCIP) Geoscience Australia is undertaking evaluation of the Gage Sandstone and the overlying South Perth Shale for the long-term storage of CO2. Initial assessment of the seismic data identified widespread fault reactivation and seismic anomalies potentially indicating hydrocarbon seepage. Some of the seismic anomalies clearly correlate with reactivated faults, but not all of them. The study highlights the importance of developing a detailed understanding of spatial variability in seal quality and history of fault reactivation both for petroleum exploration and CO2 storage assessments.
-
The first large scale projects for geological storage of carbon dioxide on the Australian mainland are likely to occur within sedimentary sequences that underlie or are within the Triassic Cretaceous Great Artesian Basin aquifer sequence. Recent national and state assessments have concluded that certain deep formations within the Great Artesian Basin show considerable geological suitability for the storage of greenhouse gases. These same formations contain trapped methane and naturally generated carbon dioxide stored for millions of years. In July 2010, the Queensland Government released exploration permits for Greenhouse Gas Storage in the Surat and Galilee basins. An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact carbon dioxide migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of carbon dioxide migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without an adequate knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of carbon dioxide, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are few hydrogeochemical studies of these deeper aquifers in the prospective storage areas. Historical hydrogeochemical data were compiled from various State and Federal Government agencies. In addition, hydrogeochemical information has been compiled from thousands of petroleum well completion reports in order to obtain more information on the deeper aquifers, not typically used for agriculture or human consumption. The data were passed through a quality checking procedure to check for mud contamination and ascertain whether a representative sample had been collected. The large majority of the samples proved to be contaminated but a small selection passed the quality checking criteria.
-
The 2011 United Nations climate change meeting in Durban provided an historic moment for CCS. After five years without progress, the Cancun Decision (2010) put in place a work program to address issues of concern before CCS could be included under the Kyoto Protocol's Clean Development Mechanism (CDM) and so allow projects in developing countries to earn Certified Emission Reductions (CERs). The program - consisting submissions, a synthesis report and workshop - concluded with the UNFCCC Secretariat producing draft 'modalities and procedures describing requirements for CCS projects under the CDM. The twenty page 'rulebook' provided the basis for negotiations in Durban. The challenging negotiations, lasting over 32 hours, concluded on 9th December with Parties agreeing to adopt final modalities and procedures for CCS under the CDM. These include provisions for participation requirements (including host country regulations), site selection and characterisation, risk and safety assessment, monitoring, liabilities, financial provision, environmental and social impact assessments, responsibilities for long term non-permanence, and timing of the CDM-project end. A key issue was the responsibility for any seepage of CO2 emissions in the long-term (non-permanence). The modalities and procedures separate responsibility for non-permanence from the liability for any local damages resulting from operation of the storage site. In relation to the former, they allow for the host country to determine the responsible entity, either the host country or the country purchasing the CERs. Note that a CER which incorporates responsibility for seepage will be less attractive to buyers. Thus a standard is established for managing CCS projects in developing countries, which will ensure a high level of environmental protection and is workable for projects. It sets an important precedent for the inclusion of CCS into other support mechanisms.
-
Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to standard Geotek multi-sensor core logger data from piston cores collected on the survey. Please follow link to manual for further information.
-
In the 2011/12 Budget, the Australian Government announced funding of a four year National CO2 Infrastructure Plan (NCIP) to accelerate the identification and development of suitable long term CO2 storage sites, within reasonable distances of major energy and industrial emission sources. The NCIP funding follows on from funding announced earlier in 2011 from the Carbon Storage Taskforce through the National Carbon Mapping and Infrastructure Plan and previous funding recommended by the former National Low Emissions Coal Council. Four offshore sedimentary basins and several onshore basins have been identified for study and pre-competitive data acquisition.
-
Between March 2008 and August 2009, 65,445 tonnes of ~75 mol% CO2 gas were injected in a depleted natural gas reservoir approximately 2000 m below surface at the Otway project site in Victoria, Australia. Groundwater flow and composition were monitored biannually in 2 near-surface aquifers between June 2006 and March 2011, spanning the pre-, syn- and post-injection periods. The shallow (~0-100 m), unconfined, porous and karstic aquifer of the Port Campbell Limestone and the deeper (~600-900 m), confined and porous aquifer of the Dilwyn Formation contain valuable fresh water resources. Groundwater levels in either aquifer have not been affected by the drilling, pumping and injection activities that were taking place, or by the precipitation increase observed during the project. In terms of groundwater composition, the Port Campbell Limestone groundwater is fresh (electrical conductivity = 801-3900 ?S/cm), cool (temperature = 12.9-22.5 °C), and near-neutral (pH 6.62-7.45), whilst the Dilwyn Formation groundwater is fresher (electrical conductivity 505-1473 ?S/cm), warmer (temperature = 42.5-48.5 °C), and more alkaline (pH 7.43-9.35). Evapotranspiration and carbonate dissolution control the composition of the groundwaters. Comparing the chemical and isotopic composition of the groundwaters collected before, during and after injection shows either no sign of statistically significant changes or, where they are statistically significant, changes that are generally opposite those expected if CO2 addition had taken place. The monitoring program demonstrates that the physical and chemical integrity of the groundwater resources has been preserved in the area.
-
This 2D deep crust seismic reflection survey is part of the joint project between the Geological Survey of Western Australia and Geoscience Australia and is a base study of the South Perth Basin linked to possible future geo-sequestration in the region. It consists of recording seismic signals down to 8 seconds two-way-time depth to image the rock layers below the earths surface. This geophysical method allows the upper crust to be imaged and assists in providing an understanding of the crustal architecture of the study region. Terrex Seismic, a sub-contractor, undertook the geophysical data acquisition. The data were processed to produce industry standard 2D land seismic reflection data. Raw data for this survey are available on request from clientservices@ga.gov.au
-
No abstract available