From 1 - 10 / 85
  • Open Geospatial Consortium (OGC) web services offer a cost efficient technology that permits transfer of standardised data from distributed sources, removing the need for data to be regularly uploaded to a centralised database. When combined with community defined exchange standards, the OGC services offer a chance to access the latest data from the originating agency and return the data in a consistent format. Interchange and mark-up languages such as the Geography Markup Language (GML) provide standard structures for transferring geospatial information over the web. The IUGS Commission for the Management and Application of Geoscience Information (CGI) has an on-going collaborative project to develop a data model and exchange language based on GML for geological map and borehole data, the GeoScience Mark-up Language (GeoSciML). The Australian Government Geoscience Information Committee (GGIC) has used the GeoSciML model as a basis to cover mineral resources (EarthResourceML), and the Canadian Groundwater Information Network (GIN) has extended GeoSciML into the groundwater domain (GWML). The focus of these activities is to develop geoscience community schema that use globally accepted geospatial web service data exchange standards.

  • Geoscience Australia is supporting the exploration and development of offshore oil and gas resources and establishment of Australia's national representative system of marine protected areas through provision of spatial information about the physical and biological character of the seabed. Central to this approach is prediction of Australia's seabed biodiversity from spatially continuous data of physical seabed properties. However, information for these properties is usually collected at sparsely-distributed discrete locations, particularly in the deep ocean. Thus, methods for generating spatially continuous information from point samples become essential tools. Such methods are, however, often data- or even variable- specific and it is difficult to select an appropriate method for any given dataset. Improving the accuracy of these physical data for biodiversity prediction, by searching for the most robust spatial interpolation methods to predict physical seabed properties, is essential to better inform resource management practises. In this regard, we conducted a simulation experiment to compare the performance of statistical and mathematical methods for spatial interpolation using samples of seabed mud content across the Australian margin. Five factors that affect the accuracy of spatial interpolation were considered: 1) region; 2) statistical method; 3) sample density; 4) searching neighbourhood; and 5) sample stratification by geomorphic provinces. Bathymetry, distance-to-coast and slope were used as secondary variables. In this study, we only report the results of the comparison of 14 methods (37 sub-methods) using samples of seabed mud content with five levels of sample density across the southwest Australian margin. The results of the simulation experiment can be applied to spatial data modelling of various physical parameters in different disciplines and have application to a variety of resource management applications for Australia's marine region.

  • It is impractical for a single agency in Australia to hold responsibility for maintaining a national landslide database. Geoscience Australia has successfully demonstrated the benefits of adopting information management strategies as one solution in bringing local, regional and national scale landslide data together. In the first time that networked service oriented interoperability has been applied to a natural hazards domain, Australia now has an up-to-date central landslide database that makes full use of diverse data across three levels of government . The approach is centred upon a 'common data model' that addresses aspects of landslides captured by different agencies. The methodology brings four distinct components together: a landslide application schema; a landslide domain model; web service implementations and a user interface. Sharing and exchanging data more efficiently through an interoperable approach ensures that full value is made of available information, and that responsibility for collecting and maintaining this data is shared across all agencies. Specific-purpose data not only continues to serve the needs of individual database custodians, but also now serves a broader need. Such a system establishes the foundation for a very powerful and coordinated information resource in Australia through its ability to collate and characterise large volumes of information, and provides a suitable basis for greater investment in data collection. At a minimum the pilot project provides Australia with a framework for a centralised national landslide inventory, which can connect other available landslide databases. There is also considerable capacity for this approach to provide State Governments with a simple way to compile and maintain their own state-wide databases, and to extend the approach across other natural hazard databases and integrate data from other domains.

  • Geoscience data standards as a field of research may come as a surprise to many geoscientists, who probably think of it as a dull peripheral issue, of little relevance to their domain. However, the subject is gaining rapidly in importance as the information revolution begins to take hold, as ultimately billions of dollars worth of information are at stake. In this article we take a look at what has happened recently in this field, where we think it is heading, and AGSO's role in national geoscience standards.

  • GeoSciML version 3.0 (http://www.geosciml.org), released in late 2011, is the latest version of the CGI-IUGS* Interoperability Working Group geoscience data interchange standard. The new version is a significant upgrade and refactoring of GeoSciML v2 which was released in 2008. GeoSciML v3 has already been adopted by several major international interoperability initiatives, including OneGeology, the EU INSPIRE program, and the US Geoscience Information Network, as their standard data exchange format for geoscience data. GeoSciML v3 makes use of recently upgraded versions of several Open Geospatial Consortium (OGC) and ISO data transfer standards, including GML v3.2, SWE Common v2.0, and Observations and Measurements v2 (ISO 19156). The GeoSciML v3 data model has been refactored from a single large application schema with many packages, into a number of smaller, but related, application schema modules with individual namespaces. This refactoring allows the use and future development of modules of GeoSciML (eg; GeologicUnit, GeologicStructure, GeologicAge, Borehole) in smaller, more manageable units. As a result of this refactoring and the integration with new OGC and ISO standards, GeoSciML v3 is not backwardly compatible with previous GeoSciML versions. The scope of GeoSciML has been extended in version 3.0 to include new models for geomorphological data (a Geomorphology application schema), and for geological specimens, geochronological interpretations, and metadata for geochemical and geochronological analyses (a LaboratoryAnalysis-Specimen application schema). In addition, there is better support for borehole data, and the PhysicalProperties model now supports a wider range of petrophysical measurements. The previously used CGI_Value data type has been superseded in favour of externally governed data types provided by OGC's SWE Common v2 and GML v3.2 data standards. The GeoSciML v3 release includes worked examples of best practice in delivering geochemical analytical data using the Observations and Measurements (ISO19156) and SWE Common v2 models. The GeoSciML v3 data model does not include vocabularies to support the data model. However, it does provide a standard pattern to reference controlled vocabulary concepts using HTTP-URIs. The international GeoSciML community has developed distributed RDF-based geoscience vocabularies that can be accessed by GeoSciML web services using the standard pattern recommended in GeoSciML v3. GeoSciML v3 is the first version of GeoSciML that will be accompanied by web service validation tools using Schematron rules. For example, these validation tools may check for compliance of a web service to a particular profile of GeoSciML, or for logical consistency of data content that cannot be enforced by the application schemas. This validation process will support accreditation of GeoSciML services and a higher degree of semantic interoperability. * International Union of Geological Sciences Commission for Management and Application of Geoscience Information (CGI-IUGS)

  • This documentation manual for the national mineral deposits dataset provides the necessary description of AGSO's mineral deposit database (OZMIN) - its structure, the main data and authority tables used by OZMIN, database table definitions, details on the Microsoft Access version of the database and a listing of those deposits in the dataset.

  • part page item. This article discusses the International Stratigraphic Guidelines and Australian practices relating to stratigraphic unit names, when there is a change to the name of the geographic feature that the unit is named after. Australian examples demonstrate both the advice of the Stratigraphic Guidelines not to change the unit name, and a particular case where it was more appropriate to change the unit name for local reasons.

  • Part-page item of matters related to stratigraphy. This column discusses informal units, the role of authors and reviewers, and is the 50th Stratigraphic Column produced by the Australian Stratigraphy Commission. Journal ISSN 0312 4711

  • single page item on Australian stratigraphy issues. This column discusses ongoing co-operation between the State and Territory Surveys; highlights of a trip to the Northern Territory and changes to GA web pages Journal ISSN 0312 4711