backscatter
Type of resources
Keywords
Publication year
Service types
Topics
-
Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The "challenger" folder contains raw multibeam backscatter data from two surveys archived seperately in 0306_tasman1 and 0315_se_tasmania. The raw multibeam backscatter data were collected along survey lines using GAs Kongsberg SIMRAD EM3002 in single head configuration from aboard MV Challenger.
-
Acoustic backscatter from the seafloor is a complex function of signal frequency, seabed roughness, grain size distribution, benthos, bioturbation, volume reverberation and other factors. Angular response is the variation in acoustic backscatter with incident angle and it is considered be an intrinsic property of the seabed. The objective of the study was to illustrate how the combination of a self-organising map (SOM) and hierarchical clustering can be used to develop an angular response facies map for Point Cloates, northwest Australia; demonstrate the cluster visualisation properties of the technique; and highlight how the technique can be used to investigate environmental variables that influence angular response.
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave generated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. The "kimbla" folder contains raw multibeam backscatter data from four surveys archived seperately in 0303_jervis_trials, 0305_jervisbay2, 0311_jervisbay3 and 0313_jervis_trials4. The raw multibeam backscatter data were collected along survey lines using GAs Kongsberg SIMRAD EM3002 in single head and dual head configuration from aboard Work Boat Kimbla.
-
Seabed sediment textural parameters such as mud, sand and gravel content can be useful surrogates for predicting patterns of benthic biodiversity. Multibeam swath mapping can provide near-complete spatial coverage of high-resolution bathymetry and backscatter data that are useful in predicting sediment parameters. The multibeam acoustic data at a ~1000 km2 area of the Carnarvon Shelf, Western Australia was used in a predictive modeling approach to map eight seabed sediment parameters. The modeling results indicates overall satisfactory statistical performance, especially for %Mud, %Sand, Sorting, Skewness, and Mean Grain Size. The study demonstrated that predictive modelling using the combination of machine learning models has several advantages over the interpolation of Cokriging. Combing multiple machine learning models can not only improve the prediction performance but also provides the ability to generate useful prediction uncertainty maps. Another important finding is that choosing an appropriate set of explanatory variables, through a manual feature selection process, is a critical step for optimizing model performance. In addition, machine learning models are able to identify important explanatory variables, which is useful in explaining underlying environmental process and checking prediction against existing knowledge of the study area. The sediment prediction maps obtained in this study provide reliable coverage of key physical variables that will be incorporated into the analysis of co-variance of physical and biological data for this area. International Journal of Geographical Information Science
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was acquired by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas.
-
This dataset contains hardness prediction data from seabed mapping surveys on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf of the Timor Sea. The survey was conducted under a Memorandum of Understanding between Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) in two consecutive years 2009 (GA survey number GA-0322 and AIMS survey number SOL4934) and 2010 (GA survey number GA-0325 and AIMS survey number SOL5117). The surveys obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to investigate relationships between the physical environment and associated biota for biodiversity prediction. The surveys also provide Arafura-Timor Sea, and wider northern Australian marine region context for the benthic biodiversity of the Van Diemen Rise. Four study areas were investigated across the outer to inner shelf. Refer to the GA record 'Methodologies for seabed substrate characterisation using multibeam bathymetry, backscatter, and video data: A case study for the Eastern Joseph Bonaparte Gulf, Northern Australia' for further information on processing techniques applied (GeoCat: 74092; GA Record: 2013/11).
-
This resource contains backscatter data acquired during the WA Margins Reconnaissance survey, GA-2476 from October 2008 to January 2009 onboard the RV Sonne as part of the Energy Security Program. Almost 230,000 km² of multibeam bathymetry was acquired over the duration of the survey including all transits. Seafloor features revealed by the backscatter and swath bathymetry have shown that geomorphology of the study areas is diverse. The continental slope of the west Australian margin study areas is characterised by large areas with numerous deeply incised canyons and areas with low-angle slumps and scarps mostly on the upper part of the slope. Other geomorphic features on the continental slope include short escarpments of local extent and small volcanic peaks over the Houtman Sub-basin part of the Perth margin. New bathymetry from the Cuvier Plateau has mapped large volcanic domes, some of them with terraces, ridges, a large previously unmapped valley and two large seamounts (newly named the Cuvier Seamount and the Wallaby seamount). See GA Record 2009/38 (Geocat# 69606) for further details on processing methods.
-
Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The datasets contains 7 backscatter grids of the south east Tasmania Shelf produced from the processed EM3002 backscatter data of the survey area using the CMST-GA MB Process.
-
This dataset contains backscatter homogeneity data from seabed mapping surveys on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf of the Timor Sea. The survey was conducted under a Memorandum of Understanding between Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) in two consecutive years 2009 (GA survey number GA-0322 and AIMS survey number SOL4934) and 2010 (GA survey number GA-0325 and AIMS survey number SOL5117). The surveys obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to investigate relationships between the physical environment and associated biota for biodiversity prediction. The surveys also provide Arafura-Timor Sea, and wider northern Australian marine region context for the benthic biodiversity of the Van Diemen Rise. Four study areas were investigated across the outer to inner shelf. Refer to the GA record 'Methodologies for seabed substrate characterisation using multibeam bathymetry, backscatter, and video data: A case study for the Eastern Joseph Bonaparte Gulf, Northern Australia' for further information on processing techniques applied (GeoCat: 74092; GA Record: 2013/11).
-
This dataset contains hardness classification data from seabed mapping surveys on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf of the Timor Sea. The survey was conducted under a Memorandum of Understanding between Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) in two consecutive years 2009 (GA survey number GA-0322 and AIMS survey number SOL4934) and 2010 (GA survey number GA-0325 and AIMS survey number SOL5117). The surveys obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to investigate relationships between the physical environment and associated biota for biodiversity prediction. The surveys also provide Arafura-Timor Sea, and wider northern Australian marine region context for the benthic biodiversity of the Van Diemen Rise. Four study areas were investigated across the outer to inner shelf. Refer to the GA record 'Methodologies for seabed substrate characterisation using multibeam bathymetry, backscatter, and video data: A case study for the Eastern Joseph Bonaparte Gulf, Northern Australia' for further information on processing techniques applied (GeoCat: 74092; GA Record: 2013/11).