From 1 - 10 / 20
  • These data comprises the 3D geophysical and geological map of the Georgina-Arunta region, Northern Territory. This 3D map summarises the key basement provinces of this region, including the geometric relationships between these provinces. Depth of cover data, and approximate thicknesses of key basins within the region are also provided. Supporting geophysical studies, including inversions of gravity and magnetic data, and seismic data and their corresponding interpretations acquired under the Australian Government's Onshore Energy Security Program, are included with this 3D map. Finally, additional data, such as topographic data, are also included.

  • The aim of this document is to * outline the general process adopted by Geoscience Australia in modelling storm surge inundation for projects conducted in collaboration with Australian and State Government planning agencies * allow discoverability of all data used to generate the products for the collaborative projects as well as internal activities

  • The aim of this document is to * outline the information management process for inundation modelling projects using ANUGA * outline the general process adopted by Geoscience Australia in modelling inundation using ANUGA * allow a future user to understand (a) how the input and output data has been stored (b) how the input data has been checked and/or manipulated before use (c) how the model has been checked for appropriateness

  • X3D Model and Visualisation of the Hydrostratigraphic System in the Hodgson and Kings Creek Sub-Catchments

  • The ISOTOPE database stores compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. This internal database is only publicly accessible through the webservices given as links on this page. This data compilation includes sample and bibliographic links. The data structure currently supports summary ages (e.g., U-Pb and Ar/Ar) through the INTERPRETED_AGES tables, as well as extended system-specific tables for Sm-Nd, Pb-Pb, Lu-Hf and O- isotopes. The data structure is designed to be extensible to adapt to evolving requirements for the storage of isotopic data. ISOTOPE and the data holdings were initially developed as part of the Exploring for the Future (EFTF) program. During development of ISOTOPE, some key considerations in compiling and storing diverse, multi-purpose isotopic datasets were developed: 1) Improved sample characterisation and bibliographic links. Often, the usefulness of an isotopic dataset is limited by the metadata available for the parent sample. Better harvesting of fundamental sample data (and better integration with related national datasets such as Australian Geological Provinces and the Australian Stratigraphic Units Database) simplifies the process of filtering an isotopic data compilation using spatial, geological and bibliographic criteria, as well as facilitating ‘audits’ targeting missing isotopic data. 2) Generalised, extensible structures for isotopic data. The need for system-specific tables for isotopic analyses does not preclude the development of generalised data-structures that reflect universal relationships. GA has modelled relational tables linking system-specific Sessions, Analyses, and interpreted data-Groups, which has proven adequate for all of the Isotopic Atlas layers developed thus far. 3) Dual delivery of ‘derived’ isotopic data. In some systems, it is critical to capture the published data (i.e. isotopic measurements and derived values, as presented by the original author) and generate an additional set of derived values from the same measurements, calculated using a single set of reference parameters (e.g. decay constant, depleted-mantle values, etc.) that permit ‘normalised’ portrayal of the data compilation-wide. 4) Flexibility in data delivery mode. In radiogenic isotope geochronology (e.g. U-Pb, Ar-Ar), careful compilation and attribution of ‘interpreted ages’ can meet the needs of much of the user-base, even without an explicit link to the constituent analyses. In contrast, isotope geochemistry (especially microbeam-based methods such as Lu-Hf via laser ablation) is usually focused on the individual measurements, without which interpreted ‘sample-averages’ have limited value. Data delivery should reflect key differences of this kind.

  • The project modelled the tsunami inundation to selected sites in South East Tasmania based on a Mw 8.7 earthquake on the Puysegur Trench occurring at Mean Sea Level. As yet, there is no knowledge of the return period for this event. The project was done in collaboration with Tasmania State Emergency Services as part of a broader project that investigated tsunami history through palaeotsunami investigations. The intent was to build the capability of staff within Tasmania Government to undertake the modelling themselves. Formal modelling of the tsunami inundation occurred through national project funding.

  • 3D visualisation of the Mount Isa Crustal Seismic Survey

  • The aim of this document is to: * outline the general process adopted by Geoscience Australia in modelling tsunami inundation for a range of projects conducted in collaboration with Australian and State Government emergency management agencies * allow discoverability of all data used to generate the products for the collaborative projects as well as internal activities.

  • The depth to Proterozoic basement surface was constructed in order to delineate the thickness of Phanerozoic and more recent cover material. The "basement" refers to the Neoproterozoic and older rocks underlying the Canning Basin. The 3D surface was constructed using GoCad software and constrained by drill-hole data, Euler depth solutions and forward modelling using magnetic data, and interpreted depths from three seismic lines crossing the Waukalycarly Embayment. The depth to basement surface should be used as a guide. With the exception of the drill-hole data, there are uncertainties involved in estimating the depths based on the magnetic methods (Euler depth solutions and forward modelling), as well as the seismic data.

  • The Cooper Basin is an upper Carboniferous-Middle Triassic intracratonic basin in northeastern South Australia and southwestern Queensland (Gravestock et al., 1998; Draper, 2002; McKellar, 2013; Carr et al., 2016; Hall et al., 2015a). The basin is Australia's premier onshore hydrocarbon producing province and is nationally significant in providing gas to the eastern Australian gas market. The basin also hosts a range of unconventional gas play types within the Permian Gidgealpa Group, including basin-centred gas and tight gas accumulations, deep dry coal gas associated with the Patchawarra and Toolachee formations, the Murteree and Roseneath shale gas plays and deep coal seam gas in the Weena Trough (e.g. Goldstein et al., 2012; Menpes et al., 2013; Greenstreet, 2015). The principal source rocks for these plays are the Permian coals and coaly shales of the Gidgealpa Group (Boreham & Hill, 1998; Deighton et al., 2003; Hall et al., 2016a). Mapping the petroleum generation potential of these source rocks is critical for understanding the hydrocarbon prospectivity of the basin. Geoscience Australia, in conjunction with the Department of State Development, South Australia and the Geological Survey of Queensland, have recently released a series of studies reviewing the distribution, type, quality, maturity and generation potential of the Cooper Basin source rocks (Hall et al., 2015a; 2016a; 2016b, 2016c; 2016d). Petroleum systems models, incorporating new Cooper Basin kinetics (Mahlstedt et al., 2015), highlight the variability in burial, thermal and hydrocarbon generation histories for each source rock across the basin (Hall et al., 2016a). A Geoscience Australia record 'Cooper Basin Petroleum Systems Analysis: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 3' providing full documentation of the model input data, workflow and results is currently in press. This work provides important insights into the hydrocarbon prospectivity of the basin (Hall et al., 2015b; Kuske et al., 2015). This product contains the working Cooper Basin Trinity-Genesis-KinEx petroleum systems model used to generate the results presented in these studies. This includes maps describing thickness, TOC and original HI for the following Permian source intervals: Toolachee Fm coals and coaly shales Daralingie Fm coals and coaly shales Roseneath Shale Epsilon Fm coals and coaly shales Murteree Shale Patchawarra Fm coals and coaly shales This model is designed for use as a regional scale hydrocarbon prospectivity screening tool. Model resolution is not high enough for this product to be used for sub-basin to prospect scale analysis, without further modification. However, the model provides a regional framework, into which more detailed prospect scale data may be embedded. The systematic workflow applied demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia's sedimentary basins.